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ABSTRACT

In the absence of experimentally determined protein structure many biological questions can be addressed using computa-

tional structural models. However, the utility of protein structural models depends on their quality. Therefore, the estima-

tion of the quality of predicted structures is an important problem. One of the approaches to this problem is the use of

knowledge-based statistical potentials. Such methods typically rely on the statistics of distances and angles of residue-

residue or atom-atom interactions collected from experimentally determined structures. Here, we present VoroMQA (Voro-

noi tessellation-based Model Quality Assessment), a new method for the estimation of protein structure quality. Our method

combines the idea of statistical potentials with the use of interatomic contact areas instead of distances. Contact areas,

derived using Voronoi tessellation of protein structure, are used to describe and seamlessly integrate both explicit interac-

tions between protein atoms and implicit interactions of protein atoms with solvent. VoroMQA produces scores at atomic,

residue, and global levels, all in the fixed range from 0 to 1. The method was tested on the CASP data and compared to sev-

eral other single-model quality assessment methods. VoroMQA showed strong performance in the recognition of the native

structure and in the structural model selection tests, thus demonstrating the efficacy of interatomic contact areas in estimat-

ing protein structure quality. The software implementation of VoroMQA is freely available as a standalone application and

as a web server at http://bioinformatics.lt/software/voromqa.
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INTRODUCTION

The ability to predict protein three-dimensional (3D)

structure from sequence is one of the most important

and challenging problems in computational biology. Pro-

tein structure prediction methods tackling this problem

are being developed continuously and in many cases they

can produce models that are close to the native structure.

The performance of such methods is systematically

assessed during community-wide CASP experiments1,2

that not only reveal successes, but also point out the bot-

tlenecks in the field of protein structure prediction. One

of the most prominent bottlenecks is the model quality

assessment (QA). Current structure prediction methods

typically produce multiple models for a given protein,

and then QA methods are used to identify the best mod-

el and to estimate how realistic the model is. However,

according to the results of recent CASP experiments,3,4

model quality assessment remains a difficult task and

there is a clear need for better QA methods.

There are several classes of QA methods. Among

them, single-model methods, that is, methods that can

evaluate a single structural model without the need to

analyze a diverse ensemble of other models, are particu-

larly well-suited for the practical use outside of CASP-

like settings. Some of the most successful single-model

QA methods, for example, ProQ25 and QMEAN,6 are

meta-methods that combine several sources of informa-

tion about an input structure. Such meta-methods often

employ machine learning techniques to produce a single

generalized quality score out of several lower-level scores

such as the estimates of free energy and agreement scores
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that tell how well some of the observed structural fea-

tures, such as secondary structure and residue solvent-

accessibility, correspond to the sequence-based predic-

tions. A viable approach for creating a better QA method

is designing better techniques to combine available

scores, another approach is to design better independent

scores that perform well on their own or become useful

components of meta-methods.

Prominent examples of independent QA methods are

knowledge-based statistical potentials. Over the last

twenty years or so a number of different statistical

potentials have been developed. Most of them rely on

statistics of pairwise interaction distances,7–12 some also

utilize information about interaction angles.13–15 How-

ever, distance-based metrics may not necessarily be best-

suited for the description and analysis of physical prop-

erties of protein structure.

Recently, we have developed CAD-score, a new refer-

ence score, which uses differences in interatomic contact

areas instead of distance differences to measure the simi-

larity between a model and the native protein struc-

ture.16 It has turned out that CAD-score is highly

correlated with traditional distance-based reference scores

such as GDT_TS,17 at the same time displaying stronger

preference for physical realism in protein structure.

Moreover, CAD-score provides a possibility to treat

single-domain, multidomain and multi-subunit struc-

tures in exactly the same way. The simplicity and robust-

ness of CAD-score suggested that contact areas may also

be effective in developing knowledge-based potentials. In

fact, the first attempt to employ contact areas as a foun-

dation for knowledge-based potentials was made over a

decade ago by McConkey et al.18 Contact areas in both

CAD-score and the McConkey method are derived from

variants of the Voronoi tessellation. Voronoi and related

tessellation methods proved to be an effective means in

the analysis of various structural features,19–23 including

the identification of physical contacts that could be uti-

lized in deriving distance-based statistical poten-

tials.24–26 However, to the best of our knowledge, the

study by McConkey et al. so far has been the only QA

method based on tessellation-derived contact areas. Their

method achieved respectable results in discriminating

native protein structures from decoys; however, perhaps

mainly due to the lack of publicly available software

implementations, the prospects of applying contact areas

for the assessment of protein structural models remained

largely unexplored. Using the same concept of employing

contact areas as a starting point, we have developed a

new all-atom statistical potential-based method for pro-

tein structure quality assessment. The new method, Vor-

oMQA (“Voronoi tessellation-based Model Quality

Assessment”), considers protein structure as a set of balls

corresponding to heavy atoms and characterize interac-

tions through interatomic contact areas derived from the

Voronoi tessellation of atomic balls.27 Here, we present

description of the method and compare its performance

with both statistical potentials and composite model

quality assessment scores.

MATERIALS AND METHODS

Construction of contacts

Given a protein structure, it can be represented as a

set of atomic balls, each ball having a van der Waals

radius depending on the atom type. A ball can be

assigned a region of space that contains all the points

that are closer (or equally close) to that ball than to any

other. Such a region is called a Voronoi cell and the par-

titioning of space into Voronoi cells is called a Voronoi

tessellation. Two adjacent Voronoi cells share a set of

points that form a surface called a Voronoi face. A Voro-

noi face can be viewed as a geometric representation of a

contact between two atoms. However, if a pair of con-

tacting atoms is near the surface of a protein structure,

the corresponding Voronoi face may extend far away

from the atoms. Here, this problem is solved by con-

straining the Voronoi cells of atomic balls inside the

boundaries defined by the solvent accessible surface

(SAS) of the same balls, as illustrated in Figure 1(A,B).

The resulting constrained Voronoi faces and SAS patches

can be combined into integral surfaces of larger compo-

nents of protein structure, for example, amino acids [Fig.

1(C)]. Construction of interatomic contact surfaces is

implemented as part of the Voronota software.27 The con-

struction procedure uses triangulated representations of

Voronoi faces and spherical surfaces. Contact areas are cal-

culated as the areas of the corresponding triangulations.

Figure 1
(A) Edges of the Voronoi cells constrained inside the solvent accessible

surface of a protein structure. (B) Cutting a Voronoi cell with a sphere
corresponding to the rolling probe surface results in constrained Voro-

noi faces and SAS patches. (C) An integral surface of a phenylalanine
residue constructed by combining atomic contact surfaces. [Color figure

can be viewed at wileyonlinelibrary.com]
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In this study the Voronoi tessellation-based analysis is

also used to describe the centrality of contacts. Given a

pair of contacting atoms, the contact between them is

called central if the line segment connecting the centers

of the atoms intersects the corresponding constrained

Voronoi face. Otherwise, the contact is called noncentral.

The definition of central and noncentral contacts is illus-

trated in Figure 2(A). Another categorization of contacts

used in this work is based on the sequence separation

between the residues of the contacting atoms. It is illus-

trated in Figure 2(B–F) in combination with the

centrality-based categorization.

Definition of the quality scoring method

Interatomic and solvent contact areas may be used to

evaluate quality of protein structural models by employ-

ing the idea of a knowledge-based statistical potential as

was first shown by McConkey et al.18 Our method is

aimed to employ the same principle using more elabo-

rate contact descriptions and to be able to produce both

local (atom-level) and global (structure-level) scores in a

fixed range of values from 0 to 1.

In order to formulate our method, the first step is to

define a set of possible contact types. Let A5fa0; a1; . . . ;
ang be a set of atom types and C5fc0; c1; . . . ; cmg be a

set of contact categories. A contact type is described by a

tuple ðai; aj ; ckÞ 2 A3A3C, which is equivalent to ðaj ; ai;
ckÞ because contacts are undirected. The atom type a0

represents solvent and the contact category c0 represents

solvent-accessible areas, therefore a0 and c0 always come

together and the set of all possible contact types can be

narrowed down to T5 ½A n a0�3½A n a0�3½C n c0�ð Þ[
½A n a0�3fa0g3fc0gð Þ.

A contact type can be assigned a pseudo-energy value

Eðai; aj ; ckÞ calculated from the corresponding expected

and observed probabilities:

Eðai; aj ; ckÞ5log
Pexpðai; aj ; ckÞ
Pobsðai; aj ; ckÞ

(1)

The probability values can be estimated empirically using

the contact area values calculated for a learning set of

high-quality experimentally determined protein struc-

tures. Let Sðai; aj ; ckÞ be a sum of all the areas of the

contacts of type ðai; aj ; ckÞ observed in the learning set.

Also, let us define that if ðai; aj ; ckÞ 2 T , then

Sðai; aj ; ckÞ50. Let Ssol and Sint be sums of solvent and

interatomic contact areas, respectively:

Ssol5
X

1�i�n

Sðai; a0; c0Þ (2)

Sint5
X

1�i�n

X
1�j�i

X
1�k�m

Sðai; aj ; ckÞ (3)

Then the observed probability of the contact type ðai; aj ;
ckÞ is defined as the following ratio of areas:

Pobsðai; aj ; ckÞ5
Sðai; aj ; ckÞ
Sint1Ssol

(4)

The corresponding expected probability should represent

how often the contacts of the same type would occur in

a set of randomly folded structures of the same sequen-

ces as in the learning set. It is estimated using the

observed probabilities of the isolated components of the

contact type ðai; aj ; ckÞ:

Pexpðai; aj ; ckÞ5

PobsðaiÞ � Pobsðc0Þ if j50

PobsðaiÞ � PobsðajÞ � PobsðckÞ if j � 1; i5j

PobsðaiÞ � PobsðajÞ � 2 � PobsðckÞ if j � 1; i 6¼ j

8>><
>>:

(5)

PobsðaiÞ5
P

0�j�n

P
0�k�m Sðai; aj ; ckÞ

2Sint1Ssol

(6)

Figure 2
(A) 2D illustration of central and noncentral contacts: the contact between balls /1 and /3 is noncentral, the other contacts are central. (B) Central
(green) and noncentral (yellow) contacts for sequence separation 1. (C) Central and noncentral contacts for sequence separation from 2 to 6. (D)

Central and noncentral contacts for sequence separation >6. (E) Only noncentral contacts for sequence separation >1. (F) Only central contacts
for sequence separation >1. The PDB ID of the protein structure used in this figure is 1T3Y. [Color figure can be viewed at wileyonlinelibrary.com]
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PobsðckÞ5
P

0�i�n

P
0�j�i Sðai; aj ; ckÞ

Sint1Ssol

(7)

Having the derivation of pseudo-energy values defined

using Eqs. (1–7), let us describe how the derived values are

used for scoring protein structures. In order to assign a

quality score to a single atom /, a set of related contacts

X/ is selected. Atom-related contacts are defined as not

only the immediate contacts of the considered atom, but

also all the contacts of the neighboring atoms. A normal-

ized pseudo-energy value EnðX/Þ is computed using the

information known about each contact x 2 X/, namely

the contact area (areax) and the contact type (typex 2 T):

EnðX/Þ5
P

x2X/
EðtypexÞ � areaxP
x2X/

areax
(8)

An atom quality score QaðX/Þ 2 ½0; 1� is defined using

the Gauss error function:

QaðX/Þ5
1

2
11erf

EnðX/Þ2ltype/

rtype/

ffiffiffi
2
p

 ! !
(9)

The values of l (mean) and r (standard deviation) are

estimated for each atom type from the normalized

pseudo-energy values calculated for the atoms in the

learning set of protein structures.

Given a set U of all atoms in a protein structure, a

global structure quality score QgðUÞ is defined as a

weighted arithmetic mean of the atoms quality scores:

QgðUÞ5
P

/2U QaðX/Þ � weight/P
/2U weight/

(10)

The weights here indicate how deep each atom is buried

inside a structure: solvent-accessible atoms have weight 1,

their direct contacting neighbors have weight 2, the neigh-

bors of the direct neighbors have weight 3, and so on.

The quality score of a residue is defined as an average

of quality scores of its atoms. A sliding window with four

residues on both sides is used to smooth residue scores

along the sequence. Let us denote an unsmoothed residue

score at position n as QrðnÞ, then the corresponding

smoothed value WrðnÞ is computed as a normalized

weighted sum of the scores of the neighboring residues:

WrðnÞ5
P

25<m<5 Qrðn1mÞ � ð52jmjÞP
25<m<5ð52jmjÞ (11)

Implementation of the quality scoring
method

Implementation of the method requires a protein

structure dataset (learning dataset) for collecting data on

interatomic contacts, the set of atom types and the set of

contact categories. Protein structures for the learning set

were obtained from the Protein Data Bank28 (www.rcsb.

org). Only protein structures solved by X-ray at better

than 2.5 Å resolution were considered. The set was limit-

ed to monomeric or oligomeric (up to 12 subunits) pro-

teins with each chain longer than 99 residues. Proteins

solved in complex with nucleic acids, membrane pro-

teins, proteins with modified polymeric residues were

excluded. From the remaining structures only representa-

tives at 50% sequence identity were retained. For each of

the resulting PDB entries (totaling 12825 as of

2015.06.11), the structure of the first biological assembly

was used for deriving contact areas. Only nonbonded

contacts between atoms of different residues were

considered.

In the case of multi-chain biological assemblies the set

of derived contacts is redundant. To remove this redun-

dancy, the contact areas are multiplied by the ratio Nu

N
,

where N is the total number of chains and Nu is the

number of unique protein chains.

Twenty standard amino acids have 167 different heavy

atom names, however, seven atom pairs are interchange-

able because of the molecular symmetry: Arg NH1 and

NH2, Asp OD1 and OD2, Glu OE1 and OE2, Phe CD1

and CD2, Phe CE1 and CE2, Tyr CD1 and CD2, Tyr

CE1 and CE2. Therefore, the final set contains 160 dis-

tinct atom types, plus one special type representing

solvent.

As for the set of contact categories, a hybrid scheme is

used: solvent contacts are treated separately; each nonsol-

vent contact is categorized as either near or far depend-

ing on the sequence separation between the residues of

the contacting atoms; each nonsolvent contact is catego-

rized as either central or noncentral as illustrated in Fig-

ure 2(A). This results in 5 distinct categories: “solvent”,

“near and central”, “near and noncentral”, “far and cen-

tral”, “far and noncentral”. During the method learning

stage, when the empirical probabilities are computed, a

contact is considered far if the corresponding sequence

separation is >6: this is done to separate the contacts

that may be largely induced by the close sequence prox-

imity of the contacting residues from the contacts that

are more likely to occur because they are favorable. Dur-

ing the method application stage, when calculating nor-

malized pseudo-energies of atoms using Eq. (8), only far

or solvent contacts are considered, but the sequence sep-

aration threshold for contacts considered as far is low-

ered so that only contacts between the atoms of residues

adjacent in sequence are categorized as near. This allows

to take into account the vast majority of contacts while

excluding the ones that are likely to appear in a structur-

al model regardless of its correctness.

When estimating the probabilities of the contact cate-

gories using Eq. (7), we tried two datasets for input: the

learning set of high quality structures and a set of lower
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quality structures that was comprised of the models of

the monomeric targets from CASP8,29 CASP9,30 and

CASP10.1 Table I contains the two resulting sets of prob-

ability values, the most prominent difference between

them being the solvent contact probabilities, meaning

that the lower quality structures are not as well packed

as the high quality ones. We reasoned that random

protein-like structures should also be packed worse than

the native protein structures, therefore for Eq. (5) we

employed the probabilities of the contact categories that

were estimated from the set of lower quality structures.

The last required information is the mean and stan-

dard deviation values used in Eq. (9). These values were

calculated for each atom type after applying Eq. (8) to

every atom in the learning set of protein structures.

The VoroMQA software is available both as a stand-

alone application and as a web-server at http://bioinfor-

matics.lt/software/voromqa. Our standalone software

does not require any third-party programs or libraries to

work. However, in some cases it may be beneficial to

employ an external tool to rebuild the side chains in

input protein structures before evaluation as this may

reduce chances of overly penalizing structural models

that have good backbone but poor side-chain packing.

Expected scores for native protein
structures

The implemented method was used to compute the

global quality scores of the protein structures in the orig-

inal learning set to estimate what scores to expect from

realistic structural models. Each structure was evaluated

twice: first time, using the default method configuration,

and second time, after rerunning the learning stage with

the structure of interest removed from the learning set.

The mean difference between the first and the second

global scores was <0.00028, for 99% of the structures

the difference was <0.0006, the maximum observed dif-

ference was 0.0038. This allows us to conclude that the

performance of the method is largely insensitive to the

presence or absence of any single structure in the learn-

ing set.

The summary of global quality scores calculated by

the second procedure is presented in Figure 3. Plot (A)

shows the empirical distribution of global scores leading

to the following observations: 1) it is unlikely for a real-

istic protein structure to have a global score lower than

0.3 or >0.7, and 2) a global quality score is not heavily

dependent on the prevailing type of secondary structure.

Plot (B) shows that, on average, smaller protein struc-

tures receive slightly lower global quality scores than

larger structures, and the variance is greater for smaller

structures. Another aspect of the method is that the scor-

ing time scales linearly with the structure size, as illus-

trated in Figure 3(C).

Table I
Observed Probabilities of the Contact Categories Estimated for The

Learning Set Of High Quality Structures (P
high
obs ) and the Set of Lower

Quality Structures Comprised of CASP Models (Plow
obs )

Category P
high
obs Plow

obs

Near and central 0.159 0.147
Near and noncentral 0.168 0.165
Far and central 0.225 0.166
Far and noncentral 0.056 0.052
Solvent 0.392 0.470

Figure 3
Recap of the global quality scores calculations performed for the protein structures in the learning set. (A) Estimated empirical density functions of
the scores for all the structures (green), the structures with prevailing alpha helices (blue) and the structures with prevailing beta sheets (red). (B)

Box plots of global scores for different thresholds of structure sizes (the rightmost box plot also covers all the structures from the learning set that

have >1100 residues). (C) Software running times plotted against the corresponding structure sizes (the test was performed using CPU IntelVR

XeonVR E5-2670 v3 @ 2.30 GHz). [Color figure can be viewed at wileyonlinelibrary.com]
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A note on the older version of the method

The initial simplified variant of the VoroMQA method

was tested in the QA category of the CASP11 experi-

ment.4 Compared to the current version, the older one

did not utilize contact categories, did not distinguish

between different atom types when converting from

pseudo-energy values to atomic quality scores and did

not assign weights to the atomic scores when calculating

global quality scores. Also, only single-chain protein

structures from the PISCES31 database were used in the

learning stage of the older version. To assess the effect of

the differences between the older and the newer versions

of VoroMQA, we recorded the results achieved by both

versions in the tests described later in this article. When

describing the test results, the older version of VoroMQA

is denoted as “VoroMQA-old” and the current version is

denoted as “VoroMQA-new” or simply “VoroMQA”.

Datasets used to assess the performance of
the method

In order to analyze the ability of VoroMQA to select a

native structure from a set of its models of varying quali-

ty, we downloaded the target and model structures from

the last four CASP experiments (CASP8-11). We did not

consider targets that correspond to individual subunits

of obligatory protein complexes representing biologically

unrealistic oligomeric state or those solved with poor res-

olution. Consequently, we used 140 CASP targets that

conform to the following criteria: a target must corre-

spond to a PDB entry that has at least one single-chain

biological assembly and the experimental method used to

determine the structure must be X-ray crystallography

with resolution better than 2.5 Å. For every target, all

the available complete models were downloaded, exces-

sive regions in models were trimmed to exactly match

the target structure. Scores for target and model struc-

tures were then computed using the old and the new

variations of VoroMQA as well as DOOP,12 GOAP,15

and dDFIRE.13

In order to analyze the ability of VoroMQA to evaluate

protein structural models, we used the CASP11 Quality

Assessment (QA) data. We considered all the 88 targets

that were used in the official assessment of CASP11 QA

results,4 but, after manual inspection, excluded four of

them (T0775, T0787, T0799 and T0813) because their

structures are single chains pulled out from obligatory

oligomers. For the remaining 84 targets, the following

data was downloaded from the CASP11 website: the

structures of server models (best150 and sel20 sets3); the

corresponding reference-based quality scores

(GDT_TS,17,32 LDDT,33 SphGr (SphereGrinder)34 and

CAD_AA16); the available global scores calculated by the

single-model quality assessment methods (MULTICOM-

CLUSTER,35 MULTICOM-NOVEL,36 ProQ2,5 ProQ2-

refine,37 Wang_SVM,38 Wang_deep_{1,2,3}38 and the

old version of VoroMQA). The latest version of our

method was applied to produce two more scores for

each model: VoroMQA-new (calculated for the unmodi-

fied input structure) and VoroMQA-new-sr (calculated

after rebuilding the side-chains of the input structure

using SCWRL439). Additionally, we computed the fol-

lowing statistical potential-based scores: DOOP, GOAP,

and dDFIRE. We compiled the retrieved and the com-

puted scores together and removed duplicate model

entries and entries with at least one score absent. The

final combined tables of scores characterize 11627 models

from the best150 sets and 1583 models from the sel20

sets (the tables are available for download from the Vor-

oMQA web page).

The best150 and sel20 sets, composed at the time by

CASP11 organizers, differ in both their size and nature.

For each target, the best150 set contains the best150

models selected using a consensus-based QA algorithm,

while the sel20 set contains 20 diverse models selected

based on a clustering of all the available models for the

target. We reasoned that it may also be interesting to

perform tests on sets that are small (like sel20) but con-

tain better models (like best150). Therefore, in addition

to the best150 and sel20 sets for each target, we used sets

of models produced by the three well-performing predic-

tion servers: BAKER-ROSETTASERVER,40 Zhang-Serv-

er,41 and QUARK.42 We dubbed these sets “BZQ15”

because only up to 15 models of the three servers are

available for each CASP11 target. Each BZQ15 set simu-

lates the real-life scenario, when a researcher needs to

choose the best model from a few generated by several

well-known servers.

Reference-based scores used to assess the
model selection capabilities

For assessing the VoroMQA performance when select-

ing the best model from a set of models of the same tar-

get, we chose to employ the same four reference-based

scores (GDT_TS, LDDT, SphGr and CAD_AA) used in

the official CASP11 QA assessment. However, each of the

four scores focuses on somewhat different structural

properties and they often disagree in deciding which

model is closer to the native structure. Moreover, each

score has a degree of uncertainty so that the score differ-

ence for close models may not always be significant.43

To take care of these issues, we additionally introduced a

simple tournament-based methodology described below.

Let us take two models a and b of the same target. Let

us say that a “wins” against b if all the four reference-

based scores are higher for a than for b. If there is a dis-

agreement, for example, if GDT TSa > GDT TSb but

LDDTa < LDDTb, then the outcome of the duel between

a and b is a draw. Using the defined rules, all the possi-

ble duels are executed for the models in the input data

set. For each model the numbers of wins, draws and
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losses are recorded. The results of the performed

“tournament” are used as a basis for our ensuing

analysis.

A straightforward way to utilize the tournament results

is to assess how well a QA method is able to select the

best model out of two. Let us consider a set of models

M, let N be the total number of nondraw duels among

the elements of M and Np be the number of nondraw

duels that the QA method correctly predicts the winner

for. Then the QA method performance can be quantified

using the agreement percentage score:

Agreement-scoreðMÞ5Np=N � 100% (12)

The next step is to assess the ability of a QA method to

select the best model out of many. In our tournament-

based framework we define the true best model of a tar-

get as the model with the highest number of won duels.

If two models have the same number of wins, the one

with more draws, that is, less losses, is considered better.

We combine the numbers of wins and the numbers of

draws into a single score called Wins-score. Let us con-

sider a target t that has Nt models and its best model b

has wb wins with db draws. Given a model m of t that

has wm wins with dm draws, let us define Wins-score

score for m. To ensure that even a single win has more

weight than Nt 21 draws, numbers of wins are multiplied

by Nt in the following formula:

Wins-scoreðmÞ5 wm � Nt 1dm

wb � Nt 1db

(13)

Wins-scoreðmÞ can range from 0 (when m has no wins

and draws) to 1 (when m is the best model). The score

can be interpreted as a measure of success achieved by

model m compared to the remaining ðNt 21Þ models of

t. We use the Win-scores of the models selected by a QA

method to quantify the ability of the method to select

the best possible models.

Summarizing Agreement-scores (or Wins-scores of

selections) for multiple different targets can be done by

calculating their mean value. However, when comparing

the performances of two different QA methods, a simple

comparison of the corresponding mean values is not suf-

ficient as it lacks the information about the significance

of the difference. We use the Wilcoxon signed-rank

test44 to assess whether two sets of per-target scores

come from two populations with different means. We

chose this particular test and not the paired Student’s

t-test because we cannot assume that a population of

Agreement-scores (or a population of selection Wins-

scores) is distributed normally. We first run the two-

sided Wilcoxon test: if the computed p-values is suffi-

ciently small, that is, the two population means differ

significantly, then the one-sided version of the test is

used to check if the first population mean is likely larger.

RESULTS

Overview of testing procedures

We tested the performance of VoroMQA in several

ways which are outlined in this section and presented in

detail in the subsequent sections.

Firstly, we focused on global VoroMQA scores and

assessed if the method is able to distinguish a native

structure from its decoys. We used data from several

CASP experiments to form sets of decoys: such sets are

comprised of models of various quality generated by a

variety of structure prediction methods. We compared

the performance of VoroMQA with the performance of

three other methods that are based solely on analyzing

geometric features and applying knowledge-based statisti-

cal potentials, namely DOOP,12 GOAP,15 and

dDFIRE.13

Next, we analyzed how VoroMQA global scores com-

puted for models relate to the observed differences

between models and the native structures (targets). To

this end, we used CASP11 structural models and the cor-

responding reference-based quality scores. As the official

assessment of CASP11 QA results4 was done using pri-

marily GDT_TS,17,32 LDDT,33 SphGr (Sphere-

Grinder)34 and CAD_AA (CAD-scoreAA),16 the same

four scores were also employed in our study.

During another test we analyzed the ability of Vor-

oMQA to select the best model out of several or many.

For this test we applied the four reference-based scores

and the newly introduced tournament-based methodolo-

gy (see “Materials and methods”), which allows multiple

reference-based scores to be considered simultaneously.

In addition to DOOP, GOAP and dDFIRE, we compared

VoroMQA with single-model quality assessment methods

that participated in CASP11, namely MULTICOM-

CLUSTER,35 MULTICOM-NOVEL,36 ProQ2,5 ProQ2-

refine,37 Wang_SVM,38 and Wang_deep_{1,2,3}.38

Unlike VoroMQA, these methods employ additional data

such as secondary structure and solvent accessibility pre-

dictions, in effect incorporating evolutionary information

derived from homologous sequences. Therefore, match-

ing or surpassing their performance may be considered a

serious challenge for VoroMQA.

The last testing procedure was dedicated to the local

scoring. We used data from the CAMEO project (www.

cameo3d.org)45 to investigate some properties of Vor-

oMQA local scores in relation with reference-based local

scores.

Selecting native structures from sets of
decoys

We tested VoroMQA alongside DOOP, GOAP and

dDFIRE according to the ability to distinguish a native

structure amidst a variety of its models (decoys) using

the data corresponding to the 140 monomeric targets
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from CASP8-11 experiments (see “Materials and meth-

ods” for details).

The performance of each structure evaluation method

was assessed by counting how many times a native (tar-

get) structure was missed. Also, differences between the

target scores and the corresponding model mean scores

were computed and converted to z-scores. According to

the number of missed native structures VoroMQA per-

formed on par with DOOP and surpassed the others.

The summary of the results is presented in Table II, the

per-target results are shown in Supporting Information

Table S1.

Relationship between VoroMQA global
scores and model quality

As we have shown above (Figure 3), VoroMQA global

scores do not significantly depend on either prevalent

secondary structure content or protein size. Thus in

principle, it should be possible to decide if a computa-

tional model is close to the native structure solely on the

basis of the VoroMQA global score. Figure 3(A) shows

that a vast majority of high quality experimentally deter-

mined structures have VoroMQA scores >0.4. Also,

almost none of the native structures have VoroMQA

scores <0.3. Following these observations, we computed

empirical distribution densities of the four reference-

based quality scores (GDT_TS, LDDT, SphGr and

CAD_AA) of the CASP11 models that have VoroMQA-

new scores in the intervals ð0; 0:3Þ; ½0:3; 0:4� and ð0:4; 1Þ.
The results, shown in Figure 4, allow us to formulate the

following simple rule for interpreting a VoroMQA-new

Table II
Results of the Target Selection Ability Analysis Performed for the Set of

140 Monomeric Targets from CASP8, CASP9, CASP10, and CASP11.
The “Missed Targets” Column Values Show How Many Times Each QA

Method Failed to Distinguish a Target Structure Among its Models.

The “Mean z-scores” Column Values Show the Average z-scores of the
QA Scores of the Target Structures

Method Missed targets Mean z-score

VoroMQA-new 8 3.19
DOOP 8 3.00
GOAP 16 2.87
VoroMQA-old 27 2.67
dDFIRE 46 2.09

Figure 4
Empirical distribution densities of GDT_TS, LDDT, SphGr and CAD_AA scores of the CASP11 models that have VoroMQA-new scores in intervals (0,
0.3), ½0:3; 0:4� and ð0:4; 1Þ: the corresponding lines are colored in red, green and blue, respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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value v of a protein structural model: if v< 0.3, then the

model is likely bad; if v> 0.4, then the model is likely

good; if v 2 ½0:3; 0:4�, then the model quality cannot be

reliably classified as bad or good using VoroMQA alone.

This rule is most useful when just a single model is avail-

able. Results for CASP11 models also showed that

VoroMQA-new and VoroMQA-new-sr global scores are

highly correlated (Pearson correlation coefficient is about

0.98). Therefore, the same rule can be applied for both

scores.

Results of the per target analysis of
CASP11 data

In model selection tests, we first analyzed how differ-

ent QA scores perform on best150 sets using the

tournament-based methodology. For each available QA

method, we calculated agreement percentage scores for

all the targets combined and for every target separately.

When considering all the possible 799703 pairs of mod-

els, only for 425877 (53%) of them all four reference-

based scores (GDT_TS, LDDT, SphGr and CAD_AA)

agree which model out of the two is better. The middle

column in Table III shows how often different QA scores

agree with the unanimous judgment of all four

reference-based scores, the last column shows the average

per-target agreement percentages, that is, mean

Agreement-scores. Table IV shows the p-values calculated

by applying the Wilcoxon signed-rank test to compare

VoroMQA-new-sr with the other methods according to

per-target Agreement-scores. Considering the significance

level threshold of 0.05, VoroMQA-new-sr significantly

outperformed all the others, except for VoroMQA-new

(results of the analogous test for VoroMQA-new are pre-

sented in Supporting Information Table S2).

Next, we asked each available QA method to select a

single model from the best150 set of every target. The

mean Wins-score, GDT_TS, LDDT, SphGr and CAD_AA

values of the selected models are presented in Table V

along with the corresponding mean z-scores. Wins-scores

and z-scores were calculated considering only the models

from best150 sets. While Table V shows that VoroMQA-

new-sr and VoroMQA-new performed relatively well, the

achieved advantage over other methods is mostly not sig-

nificant. Supporting Information Table S3 shows the p-

values calculated by applying the Wilcoxon signed-rank

test to compare the Wins-scores of the models selected

by the VoroMQA-new-sr method with the corresponding

results achieved by the other methods (results of the

analogous test for VoroMQA-new are presented in Sup-

porting Information Table S4). The p-values >0.05 indi-

cate that all the scores from VoroMQA, ProQ2 and

MULTICOM families, as well as GOAP and DOOP

scores, demonstrate very similar model-selection abilities

when analyzing models from best150 sets using our

tournament-based methodology.

Additionally, we performed the analysis based on

Agreement-scores and Wins-scores on BZQ15 sets (Sup-

porting Information Tables S5–S10). The overall trends are

similar to those of best150 sets but there are some differ-

ences. Most notably, VoroMQA-new-sr performed signifi-

cantly better than VoroMQA-new indicating that side-

chain rebuilding was particularly beneficial for scoring

models from BZQ15 sets. This is consistent with the fact

that BAKER-ROSETTASERVER differs considerably from

Zhang-Server and QUARK in the side-chain positioning

quality.46 Therefore, rebuilding side-chains before scoring

apparently helps to level significant differences in side-

chain packing leading to improved results. Also, in the test

based on Agreement-score, VoroMQA-new-sr did not sig-

nificantly outperform MULTICOM-NOVEL.

Table III
Agreement Percentage Scores Calculated for Best150 sets of Models

from CASP11: Second Column Contains Scores for all the Targets
Combined, Third Column Contains Mean Per-Target Scores. The Table

is Sorted by the Third Column

Method Total % Mean %

VoroMQA-new-sr 82.50 82.70
VoroMQA-new 81.80 82.16
GOAP 80.11 80.57
VoroMQA-old 79.70 80.48
MULTICOM-NOVEL 79.66 80.25
ProQ2-refine 78.69 79.40
MULTICOM-CLUSTER 78.76 79.21
ProQ2 78.13 78.86
dDFIRE 77.73 78.43
DOOP 76.09 76.57
Wang_SVM 74.42 75.24
Wang_deep_2 72.12 72.83
Wang_deep_3 71.65 72.30
Wang_deep_1 71.57 72.19

Table IV
Results of the Wilcoxon Signed-rank Test Applied to Compare the
Agreement Percentage Scores Achieved by the VoroMQA-new-sr Meth-

od for Best150 Sets of Models from CASP11 with the Corresponding

Agreement-Scores Achieved by the Other Methods. The Table is Sorted
by the Middle Column. All the p-values are Rounded Up to the Five

Decimal Places. Blue Color is Used to Indicate Methods that Performed
Significantly Worse than VoroMQA-new-sr. [Color table can be viewed

at wileyonlinelibrary.com]

Method p-value (two -sided) p-value (one-sided)

VoroMQA-new 0.20292 0.10146
VoroMQA-old 0.01182 0.00591
MULTICOM-NOVEL 0.00558 0.00279
ProQ2-refine 0.00041 0.00020
GOAP 0.00024 0.00012
ProQ2 0.00016 0.00008
MULTICOM-CLUSTER 0.00004 0.00002
Wang_SVM 0.00000 0.00000
Wang_deep_3 0.00000 0.00000
Wang_deep_2 0.00000 0.00000
Wang_deep_1 0.00000 0.00000
DOOP 0.00000 0.00000
dDFIRE 0.00000 0.00000
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Finally, we analyzed sel20 sets, and the detailed results

are presented in Supporting Information Tables S11–S16.

Both VoroMQA-new and VoroMQA-new-sr performed

significantly worse than ProQ2-refine and MULTICOM-

NOVEL in Agreement-score-based testing and signifi-

cantly worse than ProQ2-refine and ProQ2 in Wins-

score-based testing. Overall, for sel20 sets, every method

that is based solely on analyzing geometric features and

applying statistical potentials (GOAP, DOOP, dDFIRE

and all the VoroMQA variations) achieved worse results

than the best-performing composite methods incorporat-

ing evolutionary information in the form of predicted

features such as secondary structure or solvent accessibil-

ity: this was definitely not the case for best150 and

BZQ15 sets. We thus asked if additional information can

be decidedly beneficial when evaluating sel20 models.

Considering that every sel20 set was formed to contain

models as different from each other as possible, there

may be cases when incorrect models can be identified

simply by being significantly different from a reasonably

reliable model produced by some homology-based struc-

ture prediction server. To test this surmise we defined a

simple QA method, dubbed “HHpred-agreement”, that

evaluates models by comparing them with a model pro-

duced by the HHpred server47 (HHpredA in CASP11)

using TM-score.48 Higher TM-scores were considered to

represent better models. Supporting Information Tables

S17–S19 show how HHpred-agreement performed in

selecting models from sel20, best150 and BZQ15 sets:

HHpred-agreement performed very similarly as ProQ2-

refine and ProQ2 for sel20, but much worse than all the

other tested QA scores for best150 and BZQ15. We also

defined a meta-score, named “VoroMQA-new-and-

HHpred-agreement”, which is simply an unweighted

geometric mean of VoroMQA-new and HHpred-

agreement scores. An analogous meta-score was also

defined for VoroMQA-new-sr. As shown in Supporting

Information Tables S17–S19, the two meta-scores achieved

top spots in the Wins-score-based ranking of QA methods

for sel20 sets and performed relatively well (although not

as well as the original VoroMQA-new-sr) for best150 and

BZQ15 sets. To sum up, for sets of models similar to

sel20, using just VoroMQA may not be as effective as

using it in conjunction with additional information

derived using sequence homologs. Results of our analysis

also raise concerns about whether sel20 sets in CASP11

represent real-life model selection challenges, because the

relatively good performance of the HHpred-agreement

score suggests that it may be more efficient just to get a

single model from HHpred (or some other well-

performing homology-based server) instead of selecting a

model from a small but very diverse (sel20-like) set.

In our analysis we concentrated on the ability of con-

sidered QA methods to identify best models and so far

neglected the correlation analysis, that is, the calculation

of coefficients of correlation between QA scores and

reference-based model evaluation scores. Correlation

analysis alone is a poor indicator of the method’s perfor-

mance, however, it may provide useful insights and is

traditionally used for CASP data.4 For consistency, we

also performed correlation analysis for best150, sel20,

and BZQ15 sets (Supporting Information Tables S20–

S22). Both VoroMQA-new and VoroMQA-new-sr showed

top results for best150 sets, but not for sel20. Also,

Table V
Mean Per-target Scores of the Models Selected by Various QA Methods from Best150 sets of Models from CASP11. Each Numeric Cell Contains

Two Slash-separated Values: the Mean Reference-based Score of the Selected Models and the Corresponding Mean z-scores. The Top Five Rows
Show the Results Obtained Using Reference-based Scores, That Is, Results That are Close to Ideal. The Table Is Sorted by The Wins-Score Values.

The best scores obtained by QA methods are indicated using gray background

Method Wins-score GDT_TS LDDT SphGr CAD_AA

Wins-score 1/2.66 55/2.11 0.544/2.19 58.3/2.26 0.586/2.23
LDDT 0.939/2.42 54.3/1.93 0.549/2.33 57.8/2.14 0.584/2.13
CAD_AA 0.902/2.29 53.5/1.72 0.536/1.99 57.3/2.08 0.594/2.46
SphGr 0.861/2.1 54.1/1.85 0.522/1.7 59.7/2.55 0.58/2.04
GDT_TS 0.857/2.1 56.2/2.4 0.522/1.7 56.7/1.97 0.575/1.85

VoroMQA-new-sr 0.735/1.63 50/1.17 0.497/1.28 53/1.54 0.566/1.67
MULTICOM-CLUSTER 0.717/1.58 48.9/0.94 0.495/1.28 51/1.27 0.563/1.57
VoroMQA-new 0.713/1.56 50/1.09 0.496/1.26 51.8/1.32 0.56/1.48
VoroMQA-old 0.704/1.52 48.9/1.03 0.492/1.25 51.1/1.34 0.559/1.51
ProQ2-refine 0.703/1.51 49.3/1 0.495/1.26 52.1/1.39 0.562/1.56
MULTICOM-NOVEL 0.695/1.49 49.4/1.07 0.49/1.19 51.8/1.38 0.564/1.64
GOAP 0.694/1.49 49.8/0.89 0.501/1.27 52.2/1.22 0.568/1.66
ProQ2 0.691/1.46 49.9/0.98 0.496/1.21 52.2/1.34 0.561/1.51
DOOP 0.681/1.46 48.8/0.81 0.499/1.27 50.7/1.05 0.564/1.55
Wang_SVM 0.616/1.2 47.5/0.73 0.474/0.83 49.4/1.02 0.546/1.11
Wang_deep_2 0.568/0.99 47.2/0.65 0.471/0.72 49.8/0.96 0.545/1.05
Wang_deep_1 0.546/0.91 46.3/0.49 0.464/0.6 48.8/0.87 0.542/0.95
dDFIRE 0.542/0.97 46.1/0.33 0.471/0.75 48.4/0.78 0.553/1.28
Wang_deep_3 0.519/0.8 46.6/0.46 0.463/0.53 48.7/0.78 0.542/0.93
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VoroMQA-new-sr showed top results for BZQ15 sets.

Overall, the results of the correlation-based analysis are

consistent with those of tournament-based tests. In addi-

tion, correlation analysis showed a positive trait of Wins-

score: the four reference-based scores (GDT_TS, LDDT,

SphGr and CAD_AA) correlate better with Wins-score

than with each other.

Local scoring

VoroMQA global scores are directly derived from the

atom-level VoroMQA scores, so while testing global Vor-

oMQA scores we also indirectly tested VoroMQA local

scoring capabilities, at least the cumulative effect of

atomic VoroMQA scores. Another possible way of testing

local scoring is investigating how local VoroMQA scores

conform to some reference-based local scores. However,

due to the nature of our method, this approach is not

easily applicable as illustrated with the local scoring

example in Figure 5. The figure shows residue-level Vor-

oMQA scores of a native (target) structure and its two

models, the first model is better than the second one

according to all four reference-based scores. The Vor-

oMQA global scores correctly rank both models by their

deviation from the native one. The color-coded Vor-

oMQA local scoring profiles support the judgment of the

global scores, because for most of the residue positions

the local VoroMQA scores get lower as the global model

quality gets lower. However, low absolute values of local

VoroMQA scores do not necessarily correspond to low

reference-based local scores. For a simple example, let us

consider just the native structure. Its local VoroMQA

scores are not homogeneous despite all the residue posi-

tions being correct. This is so, because different residues

are not in equally favorable contact environments. Simi-

larly, when considering a modeled structure different

from the native one, low VoroMQA score for a single resi-

due does not necessarily mean that the structural position

of the residue is incorrect. This is illustrated in the bot-

tom part of Figure 5 with the plots of residue distance

deviations obtained from LGA32 structural alignments

and colored by the corresponding VoroMQA scores: some

of the well-aligned residues have low VoroMQA scores.

Another observation from the same plots is that the posi-

tions of the residues with higher VoroMQA scores tend to

be well-predicted. To check if this is true in general, we

used data from the CAMEO project (www.cameo3d.

org).45

Figure 5
Local VoroMQA scores calculated for T0776 target structure and two its models using VoroMQA web-server. The cartoon structural representations are

colored by smoothed per-residue VoroMQA scores. The corresponding one-dimensional color-coded profiles are shown in the middle part of the figure.
Residue distance deviations (in angstroms) colored by smoothed per-residue VoroMQA scores are plotted in the bottom part of the figure.
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We had the latest version of VoroMQA entered to the

CAMEO model quality estimation category under name

“VoroMQA_v2” since August 2015, thus we were able to

download “1-year” (weeks from 2015.10.17 to

2016.10.08) dataset and analyze it to investigate the rela-

tions between VoroMQA local scores and the corre-

sponding LDDT and CAD-score local scores. We looked

at the empirical distribution of VoroMQA local scores

that correspond to the three classes of reference-based

local scores: low, average and high. Similarly, we looked

at the distributions of reference-based local scores that

correspond to low, average and high local VoroMQA

scores. The results, presented in Figure 6, prompt us to

make two important observations: if the local VoroMQA

score for a residue in the model is >0.5, the residue is

likely well-predicted; if the local VoroMQA score is low

(0.25 or less), the accuracy of the residue position is

uncertain, because it may mean either incorrectly pre-

dicted position or correctly predicted position in unfa-

vorable environment. The latter point is illustrated in

Figure 5 showing that even a native structure can have

regions with relatively low local VoroMQA scores.

Overall, VoroMQA local scores are most useful when

analyzed along with the manual inspection of the protein

structure. For example, let us inspect models 1 and 2 in

Figure 5. In model 1 most of the low-scoring residues

correspond to solvent-accessible regions while many of

the high-scoring ones are buried in the core of the struc-

ture, in model 2 the low-scoring regions cover larger

parts of the structure and the core is scored much lower

than in model 1. These observations allow us to con-

clude that model 1 is better than model 2 even without

considering global scores.

DISCUSSION

VoroMQA is an all-atom knowledge-based protein

structure scoring method. It is important to emphasize

that the scoring function of VoroMQA was not

Figure 6
Empirical distribution densities of scores obtained from the CAMEO “1-year” dataset. Top row: VoroMQA local scores grouped by the correspond-

ing reference-based local scores, that is, LDDT and CAD-score. Bottom row: Reference-based local scores grouped by the corresponding VoroMQA
local scores. [Color figure can be viewed at wileyonlinelibrary.com]
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optimized or trained in any way to better correspond to

any of the reference-based protein structure accuracy

measures such as RMSD, GDT_TS or CAD-score. Only

an unsupervised learning procedure was applied taking

experimentally determined structures of protein biologi-

cal units (assemblies) as the source of structural informa-

tion. Also, VoroMQA does not use any additional

predictive features, for example, predicted secondary

structure or solvent accessibility that are typically derived

using multiple sequence homologs. In other words, only

protein 3D structure is needed for its assessment with

VoroMQA. Accordingly, VoroMQA falls into the category

of statistical energy potentials. However, in contrast to

most statistical potentials that are distance-based, our

method uses interatomic contact areas. The choice of

contact areas offers several advantages. Contact areas not

only define physical interactions but also implicitly take

into account their strength. Moreover, contact areas

make it possible to treat interactions within the protein

structure and interactions with solvent in the same way.

Interactions of protein atoms with solvent are considered

as just another type of contacts. In addition, the use of

contact areas allows efficient normalization of pseudo-

energy values, so that they can be converted into quality

estimates ranging from 0 to 1. This means that the Vor-

oMQA scores are largely independent of the type or the

size of an input protein structure.

We tested the performance of VoroMQA by the ability

to identify the native structure among the decoys (com-

putational models) in a test typical for statistical poten-

tials. In addition, we explored how well VoroMQA is

able to select models by their similarity to the native

structure according to different scenarios. Whereas the

task of selecting native structure is unambiguous, the

evaluation of model selection by their similarity to the

native structure is not. There are at least two reasons

why evaluation of methods for model selection is not

trivial, especially in cases when differences between mod-

els are small. One of the reasons is the uncertainty of

any reference score.43 Another reason is that it is quite

common for different reference scores to disagree about

the exact model ranking. To test the ability of VoroMQA

and other methods to select models closest to the native

structure we chose the same four reference scores used

by the official assessment of model accuracy estimation

methods in CASP11,4 namely, a rigid-body measure

(GDT_TS) and three local-structure-based scores (LDDT,

CAD-score, and SphereGrinder). However, instead of

analyzing the results of these four scores separately,4 we

devised a simple procedure that enabled us to combine

all four scores and in so doing to avoid the two prob-

lems mentioned above. The main idea of this procedure

is that one model is considered to be better (closer to

the native structure) than the other one only if all four

reference scores agree to that unanimously. Based on this

idea we introduced two scores, Agreement-score and

Wins-score, and used them throughout the study for

performance comparison of different methods. We

believe that by including multiple reference scores simul-

taneously this procedure provides a robust way for com-

paring model quality estimation methods. We also

believe that this evaluation scheme might be useful for

comparing other type of prediction methods as well.

In our tests VoroMQA consistently outperformed

DOOP, GOAP and dDFIRE that are similarly based on all-

atom statistical potentials, but use distances rather than

contact areas. The outcome of these tests is rather unex-

pected, taking into account that both GOAP and dDFIRE

feature orientation-dependent potentials whereas DOOP

potentials include the dependence on the backbone torsion

angles. In contrast, VoroMQA does not include any terms

associated with either conformation preferences of the

main chain or orientation-dependence of side chains. This

may suggest that contact areas are perhaps more suitable

compared to distances in identifying native structure and

scoring near-native conformations.

We also tested VoroMQA alongside with model quality

assessment methods that in addition to the actual struc-

ture utilize various predictions derived using evolution-

ary information and rely heavily on using machine

learning to predict reference-based model quality scores.

As VoroMQA does not use any additional information,

comparison with such composite methods puts Vor-

oMQA at disadvantage. Despite this, the tests showed

that VoroMQA often outperformed these composite

methods, especially in the one-out-of-two model selec-

tion scenario. VoroMQA achieved top results when tested

on the roughly prefiltered sets of CASP11 models, that

is, the sets comprised of models produced by the top

three prediction servers (BZQ15 sets defined in this arti-

cle) or the sets comprised of models selected using a

simple consensus-based algorithm (best150 sets provided

by the CASP11 organizers). It has been previously

observed that the side-chain remodeling may lead to

improved model selection.49 Indeed, the rebuilding of

side chains for best150 and BZQ15 model sets has fur-

ther improved VoroMQA results suggesting that signifi-

cant differences in side-chain packing may conceal the

main chain similarities.

The only case where VoroMQA (with or without side-

chain remodeling) was more prone to make mistakes

compared to the composite QA scores was when faced

with the CASP11 sel20 sets that were composed to con-

tain not better models, but models as different from each

other as possible. Such sets, however, hardly represent

any real-life model selection scenario. Moreover, we

found that the relatively poor performance of VoroMQA

in this type of setting could be rescued by simple combi-

nation of the VoroMQA score and the evolutionary

information in the form of HHpred template-based

models. This observation suggests that VoroMQA can be

easily incorporated into composite scoring functions.
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VoroMQA global scores are directly derived from

atom-level scores, so the relatively good results achieved

by our method in model selection tests are direct impli-

cations of the VoroMQA local scoring capabilities. How-

ever, it should be emphasized that local VoroMQA scores

of a structural model indicate how energetically favorable

or unfavorable the local region is, and not how much it

deviates from the corresponding region in the native

structure. A native protein structure has a combination

of both energetically favorable (for example, hydrophobic

core) and unfavorable regions (for example, active sites,

protein-protein binding sites or solvent-exposed loops).

Therefore, even a very accurate structural model will

have regions with low VoroMQA scores that will closely

reproduce the pattern observed for the native structure

(see Figure 5). In general our tests indicate that high

local VoroMQA scores usually correspond to accurate

structural regions. In contrast, low local VoroMQA scores

do not necessarily imply that the corresponding region is

unrealistic. It may just be one of the regions in a less

favorable environment. In other words, VoroMQA local

scores could be used to classify the structure into the

accurate regions and those with the uncertain accuracy.

In practice, the VoroMQA local scoring perhaps would

be most useful in qualitative analysis performed in con-

junction with the manual inspection of the protein

structure.

CONCLUSIONS

VoroMQA represents an all-atom statistical scoring

function for the estimation of protein structure accuracy.

VoroMQA shows robust performance both in recognition

of the native structure among decoys and in selecting

best models. The use of interatomic contact areas instead

of distances might be one of the reasons for relatively

good results. Thus, VoroMQA might be a valuable addi-

tion to the available set of model quality assessment

methods, not only because of strong performance, but

also because of its orthogonality to the existing scores.
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