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INTRODUCTION

Effective assessment of protein structural models

against the experimentally determined protein structure

(the reference) is at the heart of development and objec-

tive comparison of protein structure prediction methods.

It may seem that one-to-one correspondence of amino

acids in a model and the reference structure should make

such a task trivial. However, this impression is mislead-

ing. The task is complex and, despite the fact that many

evaluation scores have been devised over the years, it

continues to be an active area of research.

One of the earliest and best known scores is root

mean square deviation (RMSD).1 RMSD indicates the

mean distance between the corresponding atoms in the

two protein structures after their optimal rigid-body

superposition. It is typically calculated for Ca atoms, but

it can be applied to any subset of residue atoms.

Although RMSD is a popular score, it is informative only

if the differences are reasonably small and fairly equally

distributed. The main disadvantage of RMSD is its sensi-

tivity to large local deviations. Even few poorly modeled

residues, which may be of little structural and/or biologi-

cal importance (e.g., poorly structured protein termini or

a flexible loop), may have a large impact on the resulting

RMSD score. If different models include different num-

ber of residues, corresponding RMSD values may be

entirely misleading as to the true accuracy of models. In

particular, the inadequacy of RMSD for evaluation and

ranking of very different and often incomplete protein
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ABSTRACT

Evaluation of protein models against the native structure is essential for the development and benchmarking of protein

structure prediction methods. Although a number of evaluation scores have been proposed to date, many aspects of model

assessment still lack desired robustness. In this study we present CAD-score, a new evaluation function quantifying differen-

ces between physical contacts in a model and the reference structure. The new score uses the concept of residue–residue con-

tact area difference (CAD) introduced by Abagyan and Totrov (J Mol Biol 1997; 268:678–685). Contact areas, the underlying

basis of the score, are derived using the Voronoi tessellation of protein structure. The newly introduced CAD-score is a con-

tinuous function, confined within fixed limits, free of any arbitrary thresholds or parameters. The built-in logic for treat-

ment of missing residues allows consistent ranking of models of any degree of completeness. We tested CAD-score on a large

set of diverse models and compared it to GDT-TS, a widely accepted measure of model accuracy. Similarly to GDT-TS, CAD-

score showed a robust performance on single-domain proteins, but displayed a stronger preference for physically more real-

istic models. Unlike GDT-TS, the new score revealed a balanced assessment of domain rearrangement, removing the neces-

sity for different treatment of single-domain, multi-domain, and multi-subunit structures. Moreover, CAD-score makes it

possible to assess the accuracy of inter-domain or inter-subunit interfaces directly. In addition, the approach offers an alter-

native to the superposition-based model clustering. The CAD-score implementation is available both as a web server and a

standalone software package at http://www.ibt.lt/bioinformatics/cad-score/.

Proteins 2013; 81:149–162.
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models became apparent during early CASP experi-

ments,2,3 established for monitoring the state-of-the-art

in protein structure prediction.

Thus, CASP experiments revealed a need for scores

that would be robust in a wide range of model accuracy

and completeness. Global distance test (GDT)4 was one

of the scores developed to overcome shortcomings of

RMSD. GDT identifies the largest subset of model resi-

dues (represented by their Ca atoms) that can be super-

imposed with the corresponding residues in the reference

structure under a specific distance threshold. The overall

model accuracy is summarized by GDT total score

(GDT-TS), a single value derived by averaging the frac-

tions of residues obtained in the four independent super-

positions under 1, 2, 4, and 8 Å distance thresholds.5

Due to multiple superpositions of different stringency,

GDT-TS is able to rank models quite effectively in a wide

range of accuracy. Unlike RMSD, GDT-TS rewards the

good bits of the model without adding a penalty for the

inaccurately modeled regions. As a result, GDT-based

benchmarking promotes methods that attempt to con-

struct not only the most accurate, but also the most

complete structural models. Other scores, similar to

GDT-TS, include MaxSub6 and TM-score.7 MaxSub, just

like GDT-TS, aims at identifying the largest subset of res-

idues that can be superimposed under specific distance

threshold. However, in contrast to GDT-TS, MaxSub uses

only a single 3.5 Å distance threshold. This makes Max-

Sub somewhat less robust in ranking models, in particu-

lar those of lower accuracy.7 TM-score considers all the

corresponding residue pairs. It uses the distance-depend-

ent weighting scheme, which reduces the contribution

from significantly deviating residue pairs. In addition,

the distance-dependent down-weighting varies with the

protein size, making the score less size-dependent in

comparison with either GDT-TS or MaxSub. Yet, similar

to MaxSub, TM-score is derived from a single superposi-

tion. When size dependence is not an issue (e.g., evaluat-

ing models against the same reference) multiple superpo-

sitions as implemented in GDT-TS offer an obvious

advantage.

Not surprisingly, GDT-TS has de facto become the cen-

tral score in the automated reference-based model evalu-

ation during CASP experiments.8 However, despite its

common use, GDT-based scoring is not without weak-

nesses. Since GDT-TS is based on the rigid-body super-

position, it performs poorly on multi-domain proteins. A

slight change in the mutual domain orientation may be

biologically irrelevant, yet it may strongly affect the

GDT-TS score. Another GDT weakness is that it uses

only Ca atoms and therefore lacks information about the

correctness of residue side chain modeling. However, this

is an important component in benchmarking high accu-

racy comparative modeling or protein structure refine-

ment methods. One additional and perhaps the most dis-

concerting issue is the lack of direct relationship between

the GDT-TS score and the physicochemical characteristics

of a protein model. A model having unrealistic features

such as extensive interatomic clashes or systematic struc-

tural distortions may still receive a favorable GDT-TS

score.9–11 The same limitations are characteristic of sim-

ilar scores, MaxSub and TM-score.

In attempt to address some of these issues, a number

of modifications to the GDT-TS score have been pro-

posed. Some of them were directed at a better resolution

of higher accuracy models. Thus, GDT-HA,12 a more

stringent version of GDT-TS, uses distance thresholds

half the size of those for GDT-TS. GDC, another modi-

fied score, is capable of including different thresholds

and different subsets of residue atoms.13,14 To make the

score mindful of steric clashes, the inclusion of repulsion

term into GDT-TS was proposed.9 However, each modi-

fication addresses only one of several limitations of the

GDT-TS score.

Therefore, there is a clear need to have the best fea-

tures of GDT-TS (robustness over the wide model accu-

racy range and the ability to compare models of different

degree of completeness) combined with a more physically

meaningful representation of protein structure. Globular

proteins fold into specific 3D structures that are defined

by residue–residue interactions, which are reflected by

physical contacts. Therefore, it seems that contacts might

be well-suited for quantifying deviations in a model with

respect to the reference structure. Besides, the compari-

son of contacts does not require structure superposition

with all the associated caveats. Indeed, a number of

scores that use the concept of residue–residue contacts

have been proposed.11,14–17 However, typically, ‘‘con-

tacts’’ in these scores are represented by distances

between Ca, Cb, or all atoms within the arbitrarily

specified threshold. Obviously, the physical meaning of

contacts in such scores is lost. If only a single atom per

residue (e.g. Ca) is used, important structural details are

lost as well.

An interesting idea of using the explicit description of

physical residue–residue contacts for model evaluation

was introduced by Abagyan and Totrov.18 They proposed

to use the residue–residue contact area as the basis for

comparing a model and the reference structure. Further-

more, they introduced a single-number score, contact

area difference (CAD), as a measure of the overall model

accuracy. CAD, as defined by Abagyan and Totrov, has a

number of appealing features. It is continuous and

threshold-free, works in a wide range of model accura-

cies, adequately penalizes domain, fragment, and side-

chain rearrangements and captures essential geometrical

characteristics of protein structure.18

However, the original CAD has some properties that

make its use for evaluation of methods on a large scale

(e.g. CASP experiments) problematic. First, CAD consid-

ers only residues common for both the model and the

reference structure. It means that a complete model
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would be evaluated against the complete reference struc-

ture, while a modeled short fragment would be evaluated

against the corresponding reference fragment. In other

words, the exact choice of the reference depends on the

completeness of the model. This can hardly be consid-

ered an objective mode for benchmarking different meth-

ods. Second, the normalizing CAD term includes inter-

residue contact areas not only of the reference structure

but also of the model. Although this is not expected to

have a large impact on the total score, it nevertheless

makes the CAD normalization model-specific.

Here, we introduce a new contact area difference-based

score (CAD-score) for model evaluation against the refer-

ence structure. It combines the original CAD concept18

with some of the ideas underlying the design of the

GDT-TS score.4,5 The new CAD-score uses a more accu-

rate algorithm for the contact area calculations. Further-

more, the new algorithm resolves residue–residue con-

tacts at the level of atoms, making it possible to consider

subsets of residue atoms (main chain, side chain) sepa-

rately. CAD-score has a way of treating missing residues

in the model, and, therefore, similarly to GDT, may

efficiently rank both complete and incomplete models.

The new CAD-score is normalized against the contacts

in the reference structure and always falls between 0 and

1. The software for the calculation and visual representa-

tion of CAD-score, contact maps, and the local deviation

are available both as a web server and as a standalone

package.

MATERIALS AND METHODS

Computation of residue–residue contact
areas

Residue contact areas are derived using the protein

structure tessellation approach. We use the tessellation

referred to as the Voronoi diagram of 3D spheres19 (also

known as the additively weighted Voronoi diagram or

the Apollonius diagram). Spheres in such a tessellation

correspond to heavy atoms of van der Waals radii. Here

we used van der Waals radii for protein heavy atoms

derived by Li and Nussinov.20 For each atom we can

define the Voronoi cell, a set of all points closer to this

particular atom than to any other atom. The Voronoi

diagram of the protein structure is the set of Voronoi

cells of all the heavy atoms of the protein. Two atoms are

said to be Voronoi neighbors if their Voronoi cells share

a common subset of points.

Interatomic contacts are derived from the Voronoi dia-

gram of atoms based on the idea proposed by McConkey

et al.21 Neighboring protein atoms are defined as con-

tacting each other if a water molecule cannot fit between

them. Thus, the complete contact surface of an atom is

represented by the sphere of the radius equal to the sum

of van der Waals radius of the atom and the standard ra-

dius (1.4 Å) of a water molecule. We term it a contact

sphere. Point p on the contact sphere of atom i belongs

to the contact surface with atom j, if the following two

conditions are satisfied: (1) i and j are Voronoi neigh-

bors; (2) p is closer to j than to i or any other neighbor

of i. If p is closer to i than to any neighbor of i, then it

belongs to the solvent-accessible surface.

For a given atom, we construct its contact surfaces by

intersecting a triangulated representation of the atom

contact sphere with hyperboloids that correspond to the

junctures of neighboring Voronoi cells. As a result, the

entire contact sphere of an atom is unambiguously parti-

tioned into contact areas and solvent accessible areas.

Residue–residue contacts are constructed by simply

grouping contacts between atoms of corresponding resi-

dues. The contact between C and N atoms forming the

peptide bond of residues adjacent in sequence is not con-

sidered. Since contacts are resolved at the level of atoms,

we can define contacts not only for the entire residue but

also for various subsets of its atoms (e.g. main chain and

side chain). Figure 1 illustrates how the combination of

Voronoi cells and contact spheres is used to construct

contact surfaces for an atom [Fig. 1(A)] and for a residue

[Fig. 1(B)].

The tessellation of protein structure and interatomic

contact areas are calculated using a modification of the

algorithm developed for Voroprot.22 The modified algo-

rithm (details to be described elsewhere) features a signif-

icant increase in speed, achieved by the optimization of

spatial search operations. In addition, the improved treat-

ment of various input abnormalities allows the modified

algorithm to handle even protein structures with a share

of physically unrealistic features.

The CAD-score definition

We defined CAD-score based on the three main con-

siderations: (1) contacts in the model should be eval-

uated according to the contacts in the reference structure

(target); (2) any missing residues in the model should be

treated in the same way as if none of their contacts were

correctly predicted; (3) strong over-prediction (nonphys-

ical overlap) of a particular contact should be equivalent

to missing that contact entirely. The mathematical defini-

tion of CAD-score is presented below.

Let G denote the set of all the pairs of residues (i,j)

that have a nonzero contact area T(i,j) in the target struc-

ture. Then for every residue pair (i,j)[G we calculate the

contact area M(i,j) in the model. If the model has addi-

tional residues not present in the target, these residues

are excluded from the calculation of contact areas. If

some residue is present in the target, but is missing from

the model, all the contact areas for that residue in the

model are assigned zeroes.

For every residue pair (i,j)[G, we can then define con-

tact area difference as the absolute difference of contact

CAD-score: A New Measure of Model Accuracy
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areas between residues i and j in target T and in model

M:

CADði;jÞ ¼ jTði;jÞ �Mði;jÞj ð1Þ

To impose symmetrical treatment of over-prediction and

under-prediction of the contact area, instead of the raw

CAD(i,j) value, we use bounded CAD(i,j) defined as fol-

lows:

CADbounded
ði;jÞ ¼ minðCADði;jÞ;Tði;jÞÞ ð2Þ

CAD-score for the whole model is then defined as:

CAD-score ¼ 1�
P

ði;jÞ2G CADbounded
ði;jÞ

P
ði;jÞ2G Tði;jÞ

ð3Þ

The sum in the numerator of Eq. (3) never exceeds the

sum of all contact areas T(i,j) in the target structure. In

other words, CAD-score defined by Eq. (3) is always

within the [0,1] range. If model and target structures are

identical, CAD-score 5 1. At the other extreme, if not a

single contact is reproduced with sufficient accuracy

(there are no cases satisfying the condition: CAD(i,j) <
T(i,j)), CAD-score 5 0.

CAD-score variants

Our algorithm computes inter-residue contact areas at

the resolution of individual atoms. Therefore, we can

define contact area as well as contact area difference not

only for the entire residue, but also for any subset of its

atoms. In all cases contact areas are calculated with all

atoms present, but if a subset of residue atoms is consid-

ered, only contact areas corresponding to this subset are

retained. Here we use all residue atoms (A) and two

standard subsets of atoms, main chain (M) and side

chain (S), resulting in nine CAD-score variants (Table I).

Three pairs of CAD-score variants (A-S and S-A, A-M

and M-A, and S-M and M-S; gray background in Table

I) are not entirely symmetric. For example, glycine does

not have a side chain and therefore cannot form any S-A

contacts, but it can form A-S contacts. Nevertheless, for

Figure 1
Illustration of the procedure for deriving contact surfaces for atoms (A) and residues (B). (A) Interatomic contacts: 1, the considered atom (grey)

surrounded by neighboring atoms; 2, the Voronoi cell of the considered atom (solid) and neighboring Voronoi cells (wireframe); small colored

spheres correspond to the same neighboring atoms shown as large spheres in 1; 3, the Voronoi cell with its faces colored according to the color of

neighboring atoms; 4, interatomic contact surfaces mapped onto the contact sphere of the atom. (B) Inter-residue contacts: 1, two interacting

phenylalanine residues in the space-filling representation; 2, Voronoi cells of the same residues; faces of one of the residues are colored according to

the color of neighboring residues; 3, the map of inter-residue contact surfaces for one of the interacting residues.

Table I
CAD-score Variants Based on Standard Subsets of Residue Atoms

All
atoms (A)

Side
chain (S)

Main
chain (M)

All atoms (A) A-A S-A M-A
Side chain (S) A-S S-S M-S
Main chain (M) A-M S-M M-M

K. Olechnovič et al.
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practical purposes these three pairs of CAD-score var-

iants may be considered to be redundant. As a result, for

standard subsets of residue atoms there are six non-

redundant CAD-score variants that can be used to

address different questions in evaluating models against

the reference structure.

RESULTS

To test the properties of CAD-score and its effective-

ness in evaluating and ranking models, we applied it to

models obtained during CASP9, the ninth community-

wide assessment of protein structure prediction meth-

ods.23 CASP models are generated by a large array of

different methods and, therefore, represent a wide range

of accuracies. In addition, the set contains models of dif-

ferent degree of completeness including complete models,

those missing a few residues and only short structural

fragments. Moreover, models differ greatly by their physi-

cal plausibility. Some of them feature structural charac-

teristics reminiscent of high resolution experimental

structures, while some others have a number of unrealis-

tic features such as steric clashes and strongly deviating

covalent bond geometries. All these aspects of CASP

models make them an excellent test set for an automatic

reference-based model evaluation score as the set presents

a serious challenge for objective and fair model rank-

ing.24 To have a representative and least redundant set,

we only considered CASP9 models generated by auto-

matic methods (servers) taking a single most confident

(first) model per method for a given prediction target.

Since CAD-score is an all-atom measure, we excluded

from our analysis models produced by methods repre-

senting amino acid residues in a simplified or incomplete

form. Models for one of the targets (T0629; the long tail

fiber protein gp37 of the T4 bacteriophage) were also

excluded. T0629 forms the needle-shaped parallel homo-

trimer, and considering the isolated single chain is both

structurally and biologically meaningless.25

CAD-score is a robust measure for
evaluating and ranking single-domain models

As a first step, we decided to compare CAD-score with

GDT-TS, a standard CASP score that withstood the test

of time and is generally recognized as the single most

effective reference-based score.17 To make an overall com-

parison of CAD-score and GDT-TS, we selected CASP9

models for individual domains (‘‘assessment units’’ to be

more precise) of prediction targets as defined by the

assessors.26 For the resulting diverse set of 8429 models,

we compiled both GDT-TS and CAD scores. GDT-TS val-

ues were taken from the data archive of the Prediction

Center (http://www.predictioncenter.org/) while different

variants of CAD-score were calculated as described in

Materials and Methods. The plots displaying the relation-

ship between GDT-TS and six non-redundant CAD-score

variants are shown in Figure 2.

It is evident that there is a strong correlation between

GDT-TS and CAD-score values, which is surprising con-

sidering the different nature of scores. Notably, this is

true not only for Pearson’s correlation coefficient, which

depends on the linear relationship between the two

scores. Even better values in all cases are obtained for

Spearman’s rank correlation, which indicates the extent

to which ranking by GDT-TS agrees with ranking by

CAD-score without the assumption of the linear rela-

tionship between the two scores. In particular, three

types of CAD-score (‘all atoms–side chain’ (A-S), ‘side

chain–side chain’ (S-S), and ‘all atoms–all atoms’

(A-A)) show the strongest correlation [Fig. 2(A–C)].

For these three CAD-score variants Pearson’s correlation

coefficients are in the (0.91–0.94) range, and Spearman’s

rank correlation values are in the (0.93–0.95) range. The

other three types of CAD-score, in particular, the vari-

ant based on ‘main chain–main chain’ (M-M) contacts,

correlate somewhat weaker. We reasoned that the lower

correlation to a large degree might be determined by

the abundance of local M-M contacts that are not

linked to the global topology of the structure. If this is

true, the type of secondary structure should be a major

factor. Indeed, when analyzed separately, the correlation

for proteins rich in b-strands (many non-local M-M

contacts) improved, while for a-helical proteins (mostly

local M-M contacts) it decreased further (Supporting

Information Fig. S1).

We also looked at the correlation between CAD-score

and GDT-HA,12 a more stringent variant of GDT-TS.

GDT-HA is similarly derived from four independent

superpositions, but their threshold distances (0.5, 1, 2,

and 4 Å) are half the size of those used for standard

GDT-TS. Therefore, GDT-HA can provide a better reso-

lution for models of higher accuracy. The best correlating

CAD-score variants are the same (A-S, S-S and A-A) and

their correlation values remain very similar. Namely, the

ranges for Pearson’s and Spearman’s correlation coeffi-

cients are (0.91–0.95) and (0.92–0.95), respectively

(Supporting Information Fig. S2).

The only adjustable parameter used in CAD-score is

the values of van der Waals (VDW) radii of protein

atoms. Since different VDW radii sets have been reported

in the literature we asked whether the results are sensitive

to the choice of a particular set. To this end, in addition

to the assessment of CASP9 models using standard VDW

radii reported by Li and Nussinov,20 we repeated the

analysis using the set of minimal VDW radii derived by

the same authors.20 Although differences between the

two VDW sets are variable and some are fairly significant

(up to 0.45 Å), we observed only negligible differences in

CAD-score values and their correlation with either

GDT-TS or GDT-HA (Supporting Information Table S1).

This finding should not be too surprising after all, since

CAD-score: A New Measure of Model Accuracy
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CAD-score is based on contact area differences rather

than the absolute contact area sizes.

Taken together, these analyses revealed a robust per-

formance of CAD-score on single-domain proteins. In

particular, the three CAD-score types (A-S, S-S and A-A)

stand out. They provide some of the highest resolution

and the best correlation with GDT-TS/GDT-HA. There-

fore, we will further focus mostly on the properties of

these three CAD-score variants.

CAD-score promotes the physical realism of
structural models

It is generally assumed that the better model score

indicates a more accurate representation of the reference

structure. However, it has been noticed that some model

evaluation scores including GDT-TS are fairly insensitive

to unrealistic structural features such as steric clashes or

deviations in residue geometries.9 Therefore, an improve-

ment according to a particular score may come at the

expense of physical realism of structural models. In other

words, some protein structure prediction methods, espe-

cially if they are optimized against a particular score,

may seemingly ‘‘improve’’ their performance according to

that score without real improvement in model accuracy.

What about CAD-score? How the improvement of

models according to CAD-score relates to their physical

realism? Since CAD-score is highly correlated with GDT-

TS (Fig. 2), how does it fare in comparison to GDT-TS

in this regard? To answer these questions, we analyzed

pairs of models for which CAD-score and GDT-TS rank-

ings were in conflict, namely, CAD-score and GDT-TS

assigned better values to different models within the con-

sidered pair. We asked which score in those cases is more

consistent with the physical realism of models. We chose

the MolProbity score27 as a measure of physical realism.

MolProbity is one of the widely used structure quality

evaluation suites. The MolProbity score is a single num-

ber that represents the central MolProbity protein statis-

tics collected from a large number of high quality protein

crystal structures. The score takes into account clashes

between non-bonded atoms, backbone Ramachandran

Figure 2
Relationship between GDT-TS (horizontal axis) and different variants of CAD-score (vertical axis) for CASP9 models. CAD-score variants (A–F)

are arranged in the order of their decreasing correlation with GDT-TS. Blue, red, and green colors represent models assessed in template-based

(TBM), free modeling (FM) and unresolved (TBM/FM) categories respectively. Higher color intensity reflects higher density of models. Pearson’s
correlation coefficients and Spearman’s rank correlation coefficients are indicated for each plot.
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conformations outside the favored regions, and side

chain rotamer outliers.27 Unlike GDT-TS and CAD-

score, the MolProbity score is not a reference-centric

measure. It does not tell how close the model is to the

native structure. Instead, it reports how ‘‘protein-like’’

the model is. Therefore, MolProbity may be considered

as an independent ‘‘judge’’ for resolving ranking conflicts

between the two reference-based scores.

We limited our analysis to reasonably accurate models

of single domains (assessment units) as it would be

meaningless to consider the physical realism of grossly

incorrect models. Thus, we selected models above the

GDT-TS threshold of 0.6 (60%) and compiled pairs of

models with the conflicting rankings between GDT-TS

and each of the three CAD-score variants. We then

looked at how the MolProbity score would rank models

within the same pairs. The results of this analysis show

that in conflicting rankings, CAD-score is supported by

the MolProbity score much stronger than GDT-TS [Fig.

3(A)]. Among the three CAD-score variants, CADA-A

received the greatest MolProbity support, followed by

CADA-S and then by the most stringent variant, CADS-S.

However, model pairs with small differences of MolPro-

bity, GDT-TS, or CAD-score values might be expected to

contribute a certain level of noise to the results. There-

fore, we performed two additional tests aimed at the

progressive elimination of the impact of noise. First, we

looked only at those conflicting rankings, for which the

absolute MolProbity score difference is greater than the

standard deviation of the MolProbity score distribution

on all considered models [Supporting Information Fig.

S3(A)]. As a result, the CAD-score agreement with Mol-

Probity increased dramatically [Fig. 3(B)]. For the second

test, in addition to the constraint on the MolProbity

score difference, we asked that either GDT-TS or CAD-

score values would also differ more than the correspond-

ing standard deviation [Supporting Information Fig.

S3(B–E)]. The second test has further emphasized the

overwhelming MolProbity support for CAD-score [Fig.

3(C)]. For example, the ranking by CADA-A agreed with

the MolProbity score in 24 out of 25 cases, and only in

one case this was true for GDT-TS. Collectively, these

Figure 3
Pairs of CASP9 models with conflicting ranking by GDT-TS and CAD-score. Only models with GDT-TS over 0.6 (60%) were considered. Pie charts

represent the MolProbity score agreement with rankings by GDT-TS and each of the three variants of CAD-score. Numbers of analyzed model pairs
are indicated below each chart. (A) Complete MolProbity score data. (B) Data for model pairs with the absolute MolProbity score difference greater

than the standard deviation (0.9). (C) Data for model pairs derived as in (B) with the additional requirement that the absolute difference of either

GDT-TS or CAD-score would be greater than the corresponding standard deviation [0.06 (6%) for GDT-TS, 0.05 for CADA-A, 0.06 for CADA-S, and

0.07 for CADS-S].
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analyses indicate that if there is a disagreement about the

relative ranking of models, CAD-score assigns a better

score to the physically more realistic model much more

often than does GDT-TS. This CAD-score property

might be especially relevant for tasks such as ranking

models of higher accuracy and assessing model refine-

ment, because the better performance according to CAD-

score would strongly imply the improvement in physical

realism as well.

CAD-score removes the necessity to split
multi-domain proteins into domains for
model evaluation purposes

Many proteins are composed of multiple structural

domains. However, GDT-TS and other scores based on

the rigid-body superposition (e.g. TM-score, RMSD) are

sensitive to even small differences in domain orientation.

As a result, the score of the model for the entire struc-

ture may often be disconnected from the scores of the

models for individual domains. This problem can be alle-

viated by splitting the target structure into domains and

performing domain-based evaluation. However, as there

are no universal criteria for domain definition, it is often

impossible to unequivocally define both the number of

domains and their exact boundaries. Moreover, it is not

always clear whether it is necessary to split the multi-do-

main target structure into domains for evaluation pur-

poses. A simple method for helping to decide whether or

not the splitting into domains is required was recently

introduced by Grishin and colleagues.17 Their method,

used in the ‘‘official’’ CASP9 evaluation,26 is based on

the analysis of correlation between GDT-TS scores of the

whole-chain models and the weighted sum of GDT-TS

for individual domains. The weighted sum is defined as

follows: GDT-TS scores for each individual domain, mul-

tiplied by its length, are summed up and divided by the

sum of the domain lengths.17 The main idea is that if

the scores for the whole-chain models are systematically

lower (or higher) than the weighted sum of domain

scores, then the splitting into domains should be consid-

ered. Since this idea is quite general, we decided to

perform a similar analysis based on CAD-score and to

compare the results with those obtained for GDT-TS.

However, some CASP9 whole-chain target structures

have additional residues compared to the sum of individ-

ual domains. To make the analysis entirely objective, we

removed these additional residues from multi-domain

whole-chain target structures, so that the whole-chain

structure and the sum of domains would have exactly the

same residues. We then assessed models against these

whole-chain targets by both CAD-score and GDT-TS.

The latter data was recalculated using LGA.28 The result-

ing analysis of 1287 models for 24 multi-domain targets

is presented in Figure 4. There is a stark difference

between the GDT-TS plot [Fig. 4(A)] and those based on

CAD-score [Fig. 4(B–D)]. In the case of GDT-TS, essen-

tially for all the models the weighted sum of domain

scores is higher than the score for the entire structure.

This reaffirms the choice made by the assessors to parse

these CASP9 targets into domains (assessment units) for

performing robust model evaluation using GDT-TS. In

contrast to GDT-TS, all three CAD-score variants [Fig.

4(B–D)] show at most only small differences between

scores of the whole-chain structure and the combined

scores of domains. In other words, the evaluation based

on CAD-score allows the objective comparison of models

for multi-domain proteins even without parsing the

structures into domains.

CAD-score provides a balanced assessment
of the inter-domain arrangement accuracy in
models for multi-domain proteins

Although CAD-score shows little or no difference

between domain-based and whole-chain evaluation (Fig. 4),

Figure 4
Correlation between the model scores for the whole-chain (horizontal axis) and the weighted sum of domain scores (vertical axis) for CASP9

multi-domain targets. Different plots represent the analysis of the same models using different scores: (A) GDT-TS, (B) CADA-A, (C) CADA-S, and

(D) CADS-S.
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the important question is whether or not this reflects an

adequate scoring of domain rearrangement. In our view,

the accuracy of predicting mutual domain arrangement

should not be judged by simple error in the directional

orientation between the domains. If domains are kept to-

gether only by a connecting linker, any fixed mutual ori-

entation might be structurally and/or biologically irrele-

vant (especially if the linker is flexible). In such case, the

penalty for not predicting a particular orientation

observed in the crystal structure would be unfair. In con-

trast, if domains share extensive interface, their specific

arrangement suggests structural and/or biological impor-

tance and therefore should contribute to the evaluation

score more significantly. In other words, the larger is the

fraction of protein surface area buried at the domain

interface, the larger potential impact (positive or nega-

tive) it should be able to exert on the total score of the

model. Following this logic, we analyzed the expected

and the observed contributions of the domain arrange-

ment to the total model score. We defined the expected

contribution as the fraction of solvent accessible surface

(SAS) buried at the domain–domain interface(s) of a tar-

get corrected for the accuracy of a given whole-chain

model. The correction was performed by simply multi-

plying the SAS fraction buried at the interface by the

whole-chain score. Buried SAS was determined by sub-

tracting SAS of the whole-chain structure from the sum

of SAS for individual domains and dividing by two. Of

course, the definition of expected contribution of the

domain arrangement is simplistic, as we consider the

accuracy of the interface prediction to be the same as the

average accuracy of all domains. Nevertheless, this con-

cept is useful for exploring the relationship between the

expected and the observed contributions. The observed

contribution was defined as the difference between the

whole-chain scores and the weighted sum of domain

scores (as shown in Fig. 4).

We analyzed the relationship between the expected and

the observed contributions of the inter-domain interface

prediction component to the total score of the model for

both CAD-score and GDT-TS. The results are presented

in Figure 5. We only included data for those multi-do-

main protein models, for which all individual domains

had GDT-TS values over 0.4 (40%) and therefore were

expected to represent at least a correct structural fold.

Despite some data noisiness, the figure reveals a strik-

ingly different behavior of GDT-TS and CAD-score.

Based on the data for GDT-TS [Fig. 5(A)], two impor-

tant observations can be made. Firstly, the largest

observed contributions to the total score are several times

that of the largest expected contributions. This is the

result of the GDT-TS property to strongly exaggerate the

domain rearrangement making the domain-based evalua-

tion a necessity. Secondly, this exaggeration is most

strongly pronounced for models with some of the small-

est expected values. In other words, given similar average

quality of individual domains, models for targets having

the smallest inter-domain interface are more likely to

produce poor scores for the whole-chain structure.

In contrast, for CAD-score [Fig. 5(B–D)] the observed

contribution of the domain arrangement score to the total

score tends to increase as the expected contribution increases.

The best agreement is displayed by CADA-A-score followed by

CADA-S and CADS-S scores. Although the relationship is

somewhat noisy, the observed contributions almost never

exceed the expected ones, indicating the balanced impact of

domain arrangement errors to the total score.

An illustrative example of GDT-TS problems upon eval-

uation of models for multi-domain targets that disappear

with the application of CAD-score is provided in Figure 6.

GDT-TS scores for both domains of CASP9 model TS453

[Fig. 6(B)] are better than those for TS245 [Fig. 6(C)].

However, despite the visually very similar mutual domain

arrangement in both models [Fig. 6(A)], TS453 is assigned

a worse full-chain GDT-TS value. Obviously, this cannot

be considered a fair assessment. In contrast, CAD-score

Figure 5
Relationship between the absolute values of expected (horizontal axis)
and observed (vertical axis) contributions of the domain rearrangement

to the total model score. For definitions of expected and observed

contributions see the main text. Only data for models with GDT-TS >
0.4 (40%) for any individual domain are included. General trends for

each plot are indicated by a cubic spline applied to the data (solid line).

(A) GDT-TS, (B) CADA-A, (C) CADA-S, and (D) CADS-S data.

CAD-score: A New Measure of Model Accuracy

PROTEINS 157



assigns better scores not only for individual domains of

TS453, but, as might be expected, also for the full-chain

model. The tendency of GDT-TS to overestimate tiny dif-

ferences in mutual domain arrangement is apparent even

within the same model. It would be reasonable to expect

the accuracy for a full-chain model to be in between the

worst-scoring and the best-scoring domains. However,

according to GDT-TS, both full-chain models in Figure 6

are worse than their least accurate domain. Again, this

problem is non-existent for CAD-score.

Since the mutual arrangement of domains is not con-

ceptually different from the arrangement of protein

chains, CAD-score can also be used to evaluate the accu-

racy of models for protein complexes. The larger is the

inter-subunit interface, the bigger impact of its prediction

accuracy on the total CAD-score of the protein complex

may be expected.

CAD-score can directly evaluate the
accuracy of inter-domain or inter-subunit
interfaces

In addition to scoring models for entire multi-domain

or multi-subunit structures, CAD-score provides a direct

way for assessing the accuracy of the interface prediction.

The only difference is the reference against which the

model is evaluated. In this case the reference would be

defined as contact areas between residues originating

from either different protein domains (inter-domain

interface) or different protein subunits (inter-subunit

interface). Figure 7 provides specific examples of inter-

domain and inter-subunit interfaces of different accuracy.

The first example [Fig. 7(A)] illustrates the accuracy of

the inter-domain interface for two models of target

T0533 that have been analyzed in detail above. It con-

firms once again that model TS453 has a more accurate

inter-domain interface than TS245. Another example

[Fig. 7(B)] features inter-subunit interfaces of different

accuracy within two oligomeric predictions for target

T0576. One of the two models, TS458, was identified by

CAD-score as having the most accurate interface for this

target. This CAD-score assignment completely agrees

with the CASP9 assessment of oligomeric predictions.14

CAD-score web server and standalone
software

To make the method for calculating CAD-scores easily

accessible, we implemented it as a web server available at

http://www.ibt.lt/bioinformatics/cad-score/. The server

features a simple and intuitive interface. There are several

main functionalities. The CAD-score server can evaluate

the accuracy of single-chain protein models as well as

models of protein complexes (multi-chain structures)

against the reference structure. In addition, the server

may be used to specifically evaluate the accuracy of inter-

face prediction. The interface can be defined in a very

flexible manner. It can be defined either between differ-

ent protein chains or between any user-defined ranges of

residues (as in the interface between protein domains).

The input to the server is either a single model or

multiple models and the reference structure to be eval-

uated against. The CAD-score server calculates all CAD-

score variants, but by default reports only the three that

correlate best with GDT-TS, namely CADA-A-score,

CADA-S-score, and CADS-S-score. As a summary of

model evaluation results, the server provides not only

CAD-score variants, but also TM-score, GDT-TS, and

Figure 6
An example of multi-domain structure evaluation by GDT-TS and CAD-score. (A) Two models, TS453 and TS245, colored by domains (blue and

green) are superimposed with the target T0533 structure (grey). Cartoon representations show models TS453 (B) and TS245 (C). Increasingly larger

deviations of Ca-atoms are indicated by yellow, orange, and red colors, respectively. GDT-TS and CADA-S-score values in blue and green are for the

corresponding domains, white, for the entire model.
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GDT-HA values produced by the TM-score software.7

Models can be sorted by any of these scores. In addition

to the summary, the server generates position dependent

color-coded CAD error profiles for protein models. These

profiles are particularly useful for visual identification of

either unique or common patterns in a particular region

of a protein chain in a group of models. The user can

also explore individual models in detail. The detailed

analysis includes superimposed contact maps for the

model and the reference, the error profile with different

smoothing windows, and the Jmol visualization of model

and reference structures color-coded according to the

local CAD error.

Along with the CAD-score web server, the correspond-

ing standalone software package is available for local use.

The standalone CAD-score software computes the same

data as the server but provides additional flexibility, in

particular, if large-scale evaluation or clustering of mod-

els is needed. The software can be downloaded from the

CAD-score web server address.

DISCUSSION

The development of protein structure prediction meth-

ods and scores used for their benchmarking are interde-

pendent. Robust and effective scores promote improve-

ments in protein structure prediction methods. On the

other hand, the overall improvement in model accuracy

necessitates a more sensitive and more comprehensive

evaluation. At present, due to both the improvement of

structure prediction methods and the dominance of tem-

plate-based models, the focus is shifting toward the accu-

racy of structural features beyond the backbone. More

emphasis is put on the physical plausibility of computa-

tional models. The ability to evaluate the accuracy of

mutual domain arrangement in models for multi-domain

proteins and the arrangement of subunits within protein

complexes is also becoming increasingly important.

In this study we present CAD-score, a new model

scoring function for comprehensive evaluation of struc-

tural models. CAD-score builds upon the concept of con-

tact area difference (CAD) originally introduced by

Abagyan and Totrov.18 However, the new score differs

significantly in its design and algorithmic implementa-

tion.

One of the key differences is the treatment of missing

residues in the model. The original CAD only takes into

account the subset of residues that are common for both

target and model. In this regard, it is reminiscent of

RMSD, which can be calculated only on a common set

Figure 7
Examples of direct evaluation of the interface between domains (A) and subunits (B). (A) The inter-domain interface within the two-domain target

T0533 (left) is compared with interfaces in two models, TS453 and TS245. For ease of comparison, interfaces are represented as sets of colored faces

of Voronoi cells in the same orientation. Different colors correspond to different residues at the interface. Interface CADA-A-score values are

indicated for each model. Major errors within the less accurate interface are indicated with ellipse. The corresponding protein chain fragment is

shown as sticks in the target and both models. (B) The inter-subunit interface within the dimeric structure of target T0576 (left) is compared with

interfaces in two multi-chain models, TS458 and TS282. Notations are the same as in (A).
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of residues. In the newly defined CAD-score both the

failure to include the residue into the model and the fail-

ure to predict all of its contacts are treated identically. To

put it differently, CAD-score encourages the construction

of the complete model. Incorrectly modeled regions can

make at most only negligible improvements to the score;

however, even grossly incorrect regions of the model can-

not make the score worse compared to the situation

when they are not modeled at all. In this respect, the

design of CAD-score is similar to that of GDT-TS, which

does not reward, but at the same time does not penalize

grossly inaccurate regions. We believe that this is a very

positive feature of a reference-based model evaluation

score, as it allows testing of new bold ideas in protein

structure prediction without being penalized for large

local errors.

The second difference is the normalization procedure.

The normalizing factor in the CAD number as proposed

by Abagyan and Totrov is different for different models

of the same reference structure (target). This makes the

ranking of models for a given target problematic. In our

case, the normalizing term is constant for a given target,

no matter how unusual or how different evaluated mod-

els are.

Yet another difference is the range of values. The origi-

nally proposed CAD number is not always guaranteed to

fall within the range from 0 to 1 (0–100%). In contrast,

the newly defined CAD-score can never be outside of the

[0,1] range. This is assured by ‘‘symmetric’’ boundaries

of a maximal contact area difference for a given residue

pair. We treat the failure to predict an existing contact in

the same way as its ‘‘strong’’ over-prediction. The

‘‘strong’’ over-prediction is defined as the case when the

absolute contact area difference is larger than the refer-

ence contact area itself. In both extremes we consider the

prediction to be equally wrong, and therefore the contact

area difference is bounded by the reference contact area.

As a result, the sum of bounded contact area differences

for the model can never exceed the sum of contact areas

of the target.

Algorithms for deriving contact areas in our case and

the original CAD study are also substantially different.

We derive contact areas using a protein structure tessella-

tion approach. It allows us to take into account the influ-

ence of other residues surrounding the considered residue

pair. In the original CAD study, the contact area for a

pair of residues is calculated in isolation, thereby tending

to overestimate the size of contact area. In addition, the

resolution of contact areas is different in the two meth-

ods. In contrast to Abagyan and Totrov, we calculate con-

tact areas at the level of heavy atoms, and that allows us

to derive contact areas not only for entire residues, but

also for subsets of residue atoms such as main chain and

side chain. In turn, this allows us to define a number of

CAD-score variants, addressing different aspects of model

accuracy and providing different degrees of sensitivity.

In this study, we explored properties of the newly

introduced CAD-score and compared it primarily with

GDT-TS, a widely accepted score for reference-based

model evaluation. We found that for single structural

domains CAD-score shows a strong correlation with

GDT-TS (Fig. 2) and GDT-HA (Supporting Information

Fig. S2). In both cases the strongest correlation is

obtained for those CAD-score variants that include either

all residue atoms or side chain in any combination. It

may seem somewhat surprising that contacts between all

atoms and side chains (A-S) and even those between side

chains (S-S) correlate with GDT-TS better than all atom

to all atom (A-A) contacts. However, side chains make

up about two thirds of the protein structure and appa-

rently their packing is what gives rise to a specific folding

pattern. CAD-score variants that include only main chain

atoms on at least one side of the contact show somewhat

weaker correlation, with the main chain to main chain

(M-M) variant occupying the lower end. The character

of main chain to main chain contacts differs significantly

depending on the secondary structure type. While in b-

sheets these contacts are defined by the global topology,

for a-helices they are local and are mostly defined by the

accuracy of secondary structure assignment. Apparently,

the lack of non-local contacts within a-helical structures

is a major factor in making the M-M variant least corre-

lated with GDT-TS (Supporting Information Fig. S1).

One of the important advantages of CAD-score com-

pared to GDT-TS and other structure superposition-

based methods is the robust evaluation of models for

multi-domain proteins and protein complexes. Our anal-

ysis showed that in contrast to GDT-TS, CAD-scores of

individual domains and the whole-chain structure are

tightly connected (Fig. 4). Moreover, the accuracy of the

inter-domain or inter-subunit interface is an integral part

of the total score. The more extensive is the interface, the

more potential improvement or deterioration to the total

score it may contribute (Fig. 5). Although the domain-

based model evaluation is perfectly possible, CAD-score

removes the necessity to chop the structure into domains

to get meaningful results. Moreover, even if the structure

is split into domains, the performance of CAD-score can-

not be strongly affected by imprecise or even outright

wrong domain boundary definition, which would have a

large impact in the GDT-TS-based evaluation.

According to CAD-score, the accuracy of the model

depends only on how closely the contact areas between

residues (or subsets of residue atoms) correspond to

those in the reference structure. However, what may

seem a simplistic definition of model accuracy in fact

incorporates many structural features such as interatomic

distances, dihedral angles, hydrogen bonds, and bond

lengths. Protein structure prediction methods trained

using a particular model evaluation score, in some cases

may ‘‘improve’’ their performance by optimizing some of

the model structural parameters at the expense of others.
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Here, we showed that CAD-score is associated with phys-

ical realism of models much stronger than GDT-TS (Fig.

3). In particular, this property of CAD-score may be rele-

vant for assessing model refinement, which turns out to

be a surprisingly hard problem.29

Although we developed the new CAD-score with the

reference-based model evaluation in mind, the approach

may be a valuable tool for other tasks such as clustering

of structural models. Model clustering is one of the steps

employed by many current protein structure prediction

approaches, especially if there are no suitable structural

templates. The clustering step is used for the identifica-

tion of near-native structures from a large set of candi-

date structures (decoys). Since contact areas between resi-

dues directly reflect the strength of physical interactions,

CAD-score values may be more suitable for grouping

models with similar energies compared with Cartesian

distance-based approaches such as RMSD or GDT. As

clustering typically involves large numbers of models, the

clustering method needs to be fast. In CAD-based clus-

tering, the slowest step is the computation of contact

areas between residues in individual models. However,

once it is done, subsequent calculation of pairwise CAD-

scores is very fast. An example of model clustering results

using CAD-score is presented in Supporting Information

Figure S4.

CAD-score is based on interatomic contacts and as

such it is not exclusively restricted to protein structures.

A similar approach could be applied for evaluation of

models of other biomolecules forming complex 3D struc-

tures such as RNA. Similarly, evaluation of the protein–

protein interface (inter-domain or inter-subunit) accu-

racy could be easily extended to the more general case of

protein–ligand interfaces. Obviously, the CAD-score

based evaluation would be most appropriate for large

interfaces such as those in protein-nucleic acids com-

plexes, but perhaps it may be sufficiently informative

even for interfaces between proteins and small molecules.

CONCLUSION

The newly introduced CAD-score has a number of

attractive properties. It is based on physical contacts

between residues, thereby directly reflecting interactions

within the protein structure. It is a continuous, thresh-

old-free function that returns quantitative accuracy scores

within the strictly defined boundaries. The definition of

CAD-score does not contain any arbitrary parameters.

CAD-score provides a single uniform framework for

assessing single-domain, multi-domain, and even multi-

subunit protein structural models of varying degree of

accuracy and completeness. While being highly correlated

with GDT-TS on single-domain structures, CAD-score

displays a stronger emphasis on the physical realism of

models. We believe that all these attractive properties

make CAD-score a valuable tool for the development

and assessment of protein structure prediction and

refinement methods as well as for clustering models

based on their mutual similarity.
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