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ABSTRACT Performance in the three Critical
Assessment of protein Structure Prediction (CASP)
experiments has been compared in the areas of
alignment accuracy for models based on homology
and three-dimensional accuracy for models pro-
duced by using ab initio prediction methods. The
homologous models span the comparative modeling
and fold-recognition regimes. Each CASP target is
assigned a relative difficulty based on the extent of
sequence identity and the degree of structural over-
lap with the best available template. There is a clear
improvement in alignment accuracy between CASP1
and CASPs 2 and 3 over much of the difficulty scale
but no apparent improvement between CASP2 and
CASP3. Encouragingly, the best ab initio models
of small targets are clearly more accurate in
CASP3 than in CASPs 1 and 2. Proteins Suppl
1999;3:231–237. Published 1999 Wiley-Liss, Inc.†
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INTRODUCTION

Now that three Critical Assessment of protein Structure
Prediction (CASP) experiments have been completed, it
should be possible to determine whether progress is being
made in our ability to produce accurate and useful models
of protein structure. This study describes one of the three
attempts to begin to do that reported in this issue.1,2

There are three principal questions to be addressed in
devising numerical measures of progress:

Difficulty Scale: All protein structures are not equally
difficult to model. At one end of the spectrum, CASP data
show that a backbone copied from a template with high
sequence identity (. 60%) to the target protein in almost
all cases gives an RMS (root mean square) error on Ca
atoms of less than 1Å. At the other end, it is still almost
impossible to produce useful models of proteins with no
detectable fold relationship to a known structure. In
between the two extremes, there is a gradual decrease in
model quality as a function of decreasing sequence and
structural similarity between target and template. Thus,
to compare performance in different CASPs, it is necessary
to devise some scale of relative difficulty for all the targets.
Below, we describe one such scale. More work is needed in
this area.

Choice of Evaluation Criteria: Many different numerical
measures have been introduced over the three CASPs;

which are most useful for measuring progress? We use a
subset of the methods developed at the Livermore Predic-
tion Center. These methods are described elsewhere in the
issue,3 and further details are available at the CASP web
site.4 For this first attempt at measuring progress, we have
focused on two aspects of performance — the quality of
alignments and the quality of the three-dimensional mod-
els produced by ‘‘ab initio’’ prediction methods.

Choice of Models To Be Included: For each target in
CASP, many models are typically submitted. In assessing
progress, one must decide which of these to consider: Is the
performance of the very best people in the field most
important, or should one measure the general state of the
art? Is it important which model the predictor felt was his
or her best for a particular target, or should one consider
the model that actually turned out to be the best, irrespec-
tive of how the predictor rated it? Should one look at
performance for predictors across all targets, or consider
the best result on a particular target, irrespective of which
team submitted it? We have compiled data for three of
these possibilities: First, including only the models for
which a predictor expressed the most confidence. In CASP3,
this is the so-called ‘‘Model 1’’s, in CASP2, the model given
the highest weight, and in CASP1, the first model in a
submitted list. We refer to this as the ‘‘Model 1’’ progress
evaluation. Second, taking the best model submitted by
any predictor for a given target, independent of the
confidence the predictor expressed in it. Third, calculating
an average score over the best models submitted for up to
the six best performing groups on each target (for CASP1,
there were not always predictions from six groups avail-
able).

DIFFICULTY SCALE

For prediction targets closely related to a known struc-
ture, the percentage of sequence identity is a reasonable
indication of difficulty in producing a model. However, for
distant relationships and nonhomologous similar folds,
this signal becomes much less useful. Instead, the fraction
of the target structure that can be superimposed on an
available template is a more meaningful measure of
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difficulty. Work by Marchler-Bauer and Bryant has shown
that in CASP25 and in CASP3,1 for fold-recognition tar-
gets, model quality varies as combination of these two
factors. We have used a similar metric of difficulty, ex-
tended to cover the comparative modeling and the fold-
recognition areas of CASP. (Targets that are considered to
be tests of progress for ab initio methods are treated
separately; see below.)

The fraction of residues that can be superimposed
between a target and the best available template is based
on a sequence-independent structure superposition per-
formed with DALI.6 DALI is one of three structure compari-
son methods used in CASPs 2 and 3, providing continuity.
In CASP3, PROSUP7 results were used in evaluation
tables distributed at the meeting, and so were given a high
weight. Tests with the CASP3 targets showed that the
ranking obtained with DALI is very similar to that sug-
gested by PROSUP superpositions, except that PROSUP
was slightly superior in finding remote templates. (For
example, it identified structural similarity for T0054 and
T0085).8 For CASP2 and CASP3, possible templates were
taken from the data compiled by Liisa Holm and available
at the CASP web site.4 For CASP1, the best templates
available at that time were identified as follows: Each
target structure was compared with the library of represen-

tative structures now available on the DALI server.9 The
set of structural relationships so detected was expanded by
performing a sequence search with SSEARCH10 of each
template against all PDB structures available at the time
of CASP1. Each significant sequence relative (E value ,
1025) was then superimposed on the target to find the best
template.

For each target, only templates that DALI superim-
posed with less than 3.5Å RMS deviation were considered,
and the one that produced the largest number of structur-
ally equivalent residue pairs were selected as the best.
Sequence identity for the superimposed region was taken
directly from the DALI output.

Figure 1 shows the distribution of the fraction of super-
imposable residues and percentage sequence identity for
all targets from CASPs 1, 2, and 3 where DALI found a
template. Seventeen ab initio or very remote fold-recogni-
tion targets are not included. Targets in the comparative
modeling regime tend to cluster at the right side of the
plot, with the ‘‘easiest’’ (high sequence identity) targets at
top right. Targets that have low sequence identity are well
spread on the horizontal axis, reflecting different levels of
superimposability on the best available template. The
most difficult targets are at the lower left corner. Inspec-
tion of this distribution shows that, in general, targets

Fig. 1. Relative difficulty of targets in the three CASP experiments,
displayed as a function of the percentage sequence identity between the
target and the best available template (vertical axis) and the fraction of the
target structure that can be superimposed on the template (horizontal
axis). Comparative modeling targets tend to cluster at the right-hand side

of the plot, with easiest (high sequence identity) at the top. Fold-
recognition targets are spread out from right to left, with the most difficult
(usually analogous relationships) at the far left. Targets from each CASP
span the full range of difficulty.
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have relative positions approximately where CASP experi-
ence suggests they should be. In particular, targets classi-
fied as ab initio, where included, are at lower left, and
fold-recognition targets span the lower part of the distribu-
tion, with ‘‘fold’’ relationships tending to be on the left, and
‘‘superfamily’’ relationships toward the right. There are a
number of exceptions to the intuitive order, but we con-
sider that on average this measure is meaningful enough
to be useful. Because the targets do not fall on any single
line, a two-dimensional representation of difficulty should
ideally be used. As a reasonable first approximation, we
have used a one-dimensional ranking of difficulty. That is,
the difficulty of each target is expressed as a linear
combination of ranks by structure superimposability and
sequence identity (RANK_ STR_ALN 1 RANK_ SE-
Q_ID)/2, where RANK_STR_ALN is the rank of the target
along the horizontal axis, and RANK_SEQ_ID is the rank
along the vertical axis.

ALIGNMENT ACCURACY

A major determinant of model quality in both the
comparative modeling and fold-recognition regimes is the
effect of errors in mapping the target sequence onto
template structures. We measure such alignment quality
from the sequence-independent superposition of the model
and target structures generated by DALI. Alignment
accuracy was calculated from these superpositions by
considering each position in the sequence in turn, and
asking whether the Ca atoms of equivalent residues in the
two structures are within 3.8Å, and also checking that

neither atom has a closer Ca. Residues passing these two
tests are counted as correctly aligned. Note that this is a
more stringent definition than used by the Sippl group,
where the cutoff distance is 5Å, and there is no require-
ment that the equivalent residues be the closest neigh-
bors.11 The Sippl procedure also searches for alternative
alignments around the initial superposition. As a conse-
quence of these factors, the number of residues considered
correctly aligned is smaller for our procedure. Also note
that a direct comparison of a model structure with the
experimental target structure is different from the proce-
dure most used in CASP2, where alignment accuracy was
measured from the relationship between the model and
template structures.

Figure 2 shows the results for the ‘‘best’’ model for each
target. Consider first the left-hand part of the plot, up to
and including target 68. All the targets here are in the
comparative modeling regime, ranging from 85% identity
to 17% identity, and the difficulty order is dominated by
the sequence identity term. The very high identity models
have essentially zero alignment errors, but errors increase
rapidly as the degree of sequence identity declines, down
to typically only 70% correct for the more difficult cases.
There is no apparent difference between the three CASPs.

The next block of predictions, spanning T0053 to T0004,
is a mixture of low identity comparative modeling targets
and ‘‘easy’’ fold-recognition targets. Alignment accuracies
are around 60%. There were no CASP1 targets displayed
in this interval, and the CASP2 and CASP3 results appear
similar.

Fig. 2. Fraction of residues correctly aligned between the target
structure and the best model for each target. Yellow, CASP1; purple,
CASP2; green, CASP3. Full bars represent the fraction of correctly
aligned residues, and hatched bars represent the additional fraction of
residues in error by not more than four residue positions. The targets are

arranged left to right, starting at the least difficult. Alignment accuracy falls
steadily with increasing difficulty of targets. For the more difficult targets, it
is clear that CASPs 2 and 3 performance is superior to CASP1, but there
is no easily discernible difference between 2 and 3.
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Fig. 3. Fraction of residues cor-
rectly aligned between the target struc-
ture and the best model for each target
(A) and the average over the six best
models (B). To make the trends more
visible, each data point is smoothed by
averaging over itself and the two neigh-
boring points on each side. Both plots
show that performance in CASPs 2
and 3 are approximately equal, and
significantly better than in CASP1. Av-
eraging over the six best models gives
lower scores, indicating there are only
a few outstanding predictors. C,D: The
fraction of residues aligned to within 6
four residues, C for best models and D
for averages over the best six. Scores
are substantially higher, allowing this
margin of error, but the trends over the
CASPs are very similar.
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The rest of the range covers increasingly difficult fold
recognition targets, and there is a corresponding gradual
decrease in alignment accuracy. It is clear that CASP1
accuracy is significantly worse than CASPs 2 and 3. Given
the general noisy nature of the distribution, it is not
possible to see any significant difference between CASPs 2
and 3 by this measure. There are some interesting features
in this region though: The CASP2 target T0042, which
stands out as a high-quality result for its difficulty rating,
was treated as an ab initio target by all but one of the
successful predictors. T0083 is a case in which one domain
has a superfamily relationship to a known structure, but
the rest of the molecule is a new fold. Therefore, it ranks as
quite difficult on our scale, but many predictors produced
good models for the superfamily related region, hence, the
relatively high alignment scores.

Displaying the raw data allows one to appreciate the
details of the distribution but not to easily see overall
trends that may be significant for detecting progress.
Figure 3 shows the same data, but smoothed, i.e., the score
for each target is the average over itself and the closest two
targets from the same CASP on each side. Figure 3A shows
the same data as Figure 2. It is immediately clear that
starting in the moderately difficult comparative modeling
region (around P450) and extending through to the most
difficult targets, the CASP1 results are significantly worse
than those of the other CASPs, but that CASP2 and 3 are
essentially the same. Figure 3B shows the results allowing
up to four-residues alignment error. For a large section of
the difficulty range, scores are substantially better, but the
overall relationship between the three CASPs is the same
as in Figure 3A. Figure 3C,D again shows the fraction
correctly aligned and aligned within 6 four residues,
respectively, but averaged over the six best predictions on
each target. Scores are generally lower in these plots,
indicating that there were a few outstanding predictors,
but again CASP1 is the worst, and CASP2 and 3 are very
similar. The ‘‘Model 1’’ plots lead to the same conclusions
and, therefore, are not shown here.

AB INITIO PREDICTION PERFORMANCE

We have compared ab initio prediction quality over the
three CASPs. The comparison is restricted to the relatively
small targets (less than approximately 120 residues) that
were in the ‘‘difficult’’ or ‘‘impossible’’ categories for fold
recognition and considering only predictions believed to be
made by using ab initio methods. These small targets are
the ones for which numerically intensive ab initio methods
can be applied. Because ab initio prediction methods are
not yet powerful enough to produce good models of full-size
proteins, it is necessary to use evaluation procedures that
identify any accurately predicted substructures. These
substructures may not necessarily be composed of contigu-
ous regions of the sequence. We have used the Global
Distance Test (GDT), described in the Livermore Methods
article in this issue.3 The algorithm finds the maximum
number of residues for which the distance between the
target and corresponding model Ca is less than some
threshold, in a sequence-dependent superposition. In look-
ing at the results, it should be borne in mind that a
distance threshold is a stricter criterion than an RMS
deviation, in the sense that the RMS deviation of a set of
residues is usually substantially less than the distance
threshold used to define the set. (See the GDT data on the
CASP web site4 for examples of the relationship between a
distance threshold and RMS deviation; factors of up to two
are not uncommon.) We consider distance thresholds of 1,
2, 4, and 8Å.

Figure 4A shows the results for the best model submit-
ted for a given target, and Figure 4B shows an average
over up to six best predictions from different groups.
‘‘Model 1’’ results are slightly worse than ‘‘best model,’’ but
in this most difficult category, it is reasonable to focus on
the best. In the ‘‘best model’’ plot, there is only one
prediction in CASPs 1 and 2 with more than 40 residues
below the 4Å distance threshold, and the others all have
less than 25. The high scoring one is the CASP2 target,
T0042, an all a protein. This target was recognized at the

Figure 3. (Continued.)
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time as the single case for which meaningful ab initio
predictions were made (there was also one high-quality
threading prediction of the same target). In CASP3, three
targets have 40 residues or more below this threshold and
also have over 60 residues below 8Å. The best performance
is for the CASP3 target T0077, a mixed a/b structure, with
more than 50 residues below 4Å. In the plot showing the
average over the six best predictions, two of the more
successful CASP3 targets have significantly lower scores,
indicating that only a few predictors could produce the
best results. The distinct improvement seen in going from
CASPs 1 and 2 to CASP3 is quite encouraging. However,
all but the smallest targets still have large ‘‘white’’ bars.
That is, regions that are poorly modeled, so, not surpris-
ingly, there is still a long way to go. The two successful
small targets ‘‘membind’’ and T0065 are small helical
proteins, and the larger successful targets 42, 56, and 61
are also essentially all helical, indicating that, at present,
success is mainly limited to this type of structure.

CONCLUSIONS

In this article, we have explored only two of a range of
possible measures. The number of examples is small, and
the noise large, making it hard to reach statistically
significant conclusions. Nevertheless, it is possible to
make some observations. Model quality for most fold-
recognition targets, measured by fraction of residues cor-
rectly aligned, does seem to have improved significantly
from CASP1 to CASP2 but not from CASP2 to CASP3. The
pattern is similar for both the very best predictions on each
target and for the set of six best predictions. For the easier
comparative models, alignment quality does not show any
difference between the CASPs. Errors in this regime are
dominated by the regions of the target that do not match
the best available template closely, that is ‘‘loops,’’ or
secondary elements that have large relative shifts. Com-
parative modelers believe that improvements have been
made in alignment quality, but in those portions of the
structure that do superimpose well, not what is measured
here. Quantitative evaluation of that type of alignment
awaits a detailed study of progress in comparative model-
ing. Encouragingly, ab initio prediction on small targets
does seem to have improved from CASP 1 and 2 to CASP3.
Most success has been with all a structures, with good
results on one of two targets in CASP2 (T0042 but not
T0037), and two of two in CASP3. The best results are for a
CASP3 mixed a/b target (T0077), suggesting progress with
other architectures.

Fig. 4. Comparison of ab initio performance in the three CASPs. A:
The best ab initio prediction on each target. (B) Average over up to six
best predictions. The number of residues closer than 1, 2, 4, 8, and . 8Å
to the equivalent residues in the target structure are shown in the bars.
Targets are ordered by size, for each CASP. Yellow, CASP1; purple,
CASP2; green, CASP3. Results are shown for the small targets, for which
numerically intensive methods could be used. Although CASPs 1 and 2
have only one reasonably successful target (T0042), there are three in
CASP3 (56, 61, and 77).
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