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ABSTRACT Livermore Prediction Center pro-
vides basic infrastructure for the CASP (Critical
Assessment of Structure Prediction) experiments,
including prediction processing and verification
servers, a system of prediction evaluation tools,
and interactive numerical and graphical displays.
Here we outline the essentials of our approach, with
discussion of the superposition procedures, defini-
tions of basic measures, and descriptions of new
methods developed to analyze predictions. Our
primary focus is on the evaluation of three-
dimensional models and secondary structure pre-
dictions. To put the results of the three prediction
experiments held to date on the same footing, the
latest CASP3 evaluation criteria were retrospec-
tively applied to both CASP1 and CASP2 predic-
tions. Finally, we give an overview of our website
(http://PredictionCenter.llnl.gov), which makes the
target structures, predictions, and the evaluation
system accessible to the community. Proteins Suppl
1999;3:22–29. Published 1999 Wiley-Liss, Inc.†
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INTRODUCTION

With the significant expansion of activity in the struc-
ture prediction field, processing and subsequent analysis
of predictions has become increasingly complex. Livermore
Prediction Center addresses this problem in three ways:
first, by soliciting and verifying prediction targets and by
overseeing that their release status has not been compro-
mised; second, by processing predictions, that is, format
verification, submission updates, and compliance with
specific target deadlines; and third, by evaluation of predic-
tions, including development and implementation of evalu-
ation methods, necessary calculations, and publication of
the evaluation results.

One of the lessons learned from CASP is that analyzing
the effectiveness of prediction methods is not a trivial
matter. The relatively simple comparative tools we had at
our disposal at the beginning of the process in 1994 proved
cumbersome to use and in the final consideration not fully
satisfactory. To evaluate predictions, first we need an
analytical approach to identify what in a prediction worked
and what failed. Second, we need a comparative approach,
using both general and specialized techniques, to identify

which methods work best, and which address a specific
aspect of prediction most successfully.

Since the first CASP prediction experiment, a number of
new measures and methods aimed at both the analytical
and comparative aspects of evaluation have been devel-
oped. As the final assessment of predictions in the CASP
process rests with the independent assessors, new evalua-
tion criteria have often been introduced at that stage. To
date, ten independent assessors have contributed to the
process. Taken together with the methods suggested by
the organizers, by consultancy groups, and by predictors,
the number of evaluation techniques tried at CASP be-
came considerable. Nevertheless, the methods we have at
hand today still do not address all the evaluation problems
to our complete satisfaction. Discussions of these matters
continue in the community and new techniques are being
considered.

This paper gives an outline of the evaluation methods
presently implemented at the Prediction Center. We hope
that together with other methods described in this issue it
will provide a basis for discussion of which methods to use
in the next round, the CASP4 prediction experiment.

APPROACH
Processing of Predictions

All predictions are accepted electronically. Only in the
first CASP were other than electronic submissions consid-
ered. A need for a consistent and complete form of submis-
sions, as well as their large number, quickly necessitated
development of an efficient processing system. Each submit-
ted model is automatically tested by the format verifica-
tion server. Models that conform to the format and dead-
line requirements are assigned an accession code. A unique
accession code is composed of the number of the prediction
target, format category, submitting group number, and
model index (a number assigned by prediction groups to
rank their submissions).

Recommendation by the consultancy groups of putting
major emphasis on 3D coordinate models and to eliminate
pre-classification of targets into specific prediction catego-
ries resulted in a simplification of prediction formats. In
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CASP3, predictions were accepted in a form of atomic
coordinates, alignments to known, publicly available struc-
tures, secondary structure assignments, and residue-
residue distances (TS, AL, SS, and RR respectively). Up to
five models were accepted from a prediction group per each
target, with one of them designated as the primary predic-
tion (model 1). Submission of a duplicate model (same
target, group, model index) would replace a previously
accepted model, provided it was received before target’s
prediction deadline.

All AL type predictions were converted to 3D backbone
coordinates prior to evaluation. Alternatively, a facility to
translate sequence-structure alignments (AL format) into
standard PDB atom records (TS format) was made avail-
able at the Prediction Center website1. There were rela-
tively few RR type predictions submitted to CASP3. Al-
though they were accepted and format-verified at
Livermore, their evaluation has been carried out by Tim
Hubbard and Christine Orengo’s group—a clearly defined
and community accepted assessment system has yet to be
agreed upon and implemented. Here we discuss evaluation
of the 3D and secondary structure predictions.

Superposition Procedures

Before we describe the measures used in evaluation of
predictions, let us consider the superposition procedures
designed to spatially align models and targets. The first,
most obvious approach is to align residues in both model
and target in a 1:1 correspondence, or sequence-dependent
manner. An advantage of this procedure, for all residues in
a protein or for a specified subset, is that a unique and
optimal superposition can easily be obtained.2

In many predictions, some regions of structure are often
less well modeled than others. In such cases an iterative
procedure can be applied to exclude the outlying residues
from the superposition. The problem does not lend itself to
optimal solutions easily; in practice only approximate
results are produced. When most of the structure can be
superimposed unambiguously, as in comparative model-
ing, we have used a single iterative procedure. For ab initio
predictions we have generated a very large number of
different superpositions to assure a very good approxima-
tion of the optimal one. This procedure (GDT) is described
in more detail later in this article.

In some instances it is necessary to generate superposi-
tions in a sequence-independent manner, unrestricted by
the 1:1 sequence correspondence requirement. These are
designed to recognize structural similarity even in the
presence of model-target alignment errors. Sequence-
independent superpositions present a considerably more
involved computational problem. Procedures developed to
date are suboptimal in nature and, therefore, at least to
some degree arbitrary. In our calculations we have used
results from a well established DALI method.3 DALI has
also been used to identify, whenever possible, close struc-
tural homologues and produce corresponding target-
parent structural alignments (described below).

EVALUATION OF 3D MODELS
Basic Measures

The basic measure implemented in our evaluation soft-
ware is the RMSD (root-mean-square-deviation) between
model and target. It is used to measure differences be-
tween atomic coordinates, with results dependent on struc-
tural superposition, and between dihedral angles, indepen-
dent of superposition. In the case of RMSD over coordinates,
results are calculated for all atomic positions or subsets
including Ca’s, main chain, and side chain atoms. RMSD
over dihedral angles is calculated separately for f/c, and
for x angles. In some cases, cutoff parameters are used to
define subsets of structure. These are based on experience
or generally accepted values and when performing evalua-
tion they may be modified, if desired. Completeness of a
prediction determines how many atomic positions or dihe-
dral angles may be included in the evaluation. In each case
we report:
NP—Number of Predicted atomic positions or dihedral

angles
TN—corresponding Total Number in the target structure
PP—Percent Predicted (NP/TN)

Additionally, for dihedral angles we report:
PC—Percent of Correctly predicted (within a 30-degree

cutoff).
To assess the quality of a prediction in more detail,

measures described above may be applied to specific
subsets of structure. Taking averages of quantities such as
RMSD over the whole structure smoothes out the most
interesting differences, so a range of subsets of the data
have been defined to allow separate evaluations and
statistics to be calculated for each. These have been
designed to single out elements of protein structure and to
eliminate the effect of possible experimental uncertainties
(for brevity, only qualitative descriptions are given here,
more details may be obtained from the Prediction Center
web page):
‘‘ALL’’All atoms or dihedral angles possible to evaluate are

considered.
‘‘SECONDARY STRUCTURE’’ Secondary structure ele-

ments in the target structure. Helices and strands, as
defined by DSSP,4 with lower bounds of six residues for
helix and three residues for strand, are included.

‘‘SURFACE’’Surface residues specified by calculating acces-
sibility according to Lee and Richards5 and fractional
values relative to Shrake and Rupley’s Gly-X-Gly stan-
dards.6 Residues with values greater than cutoff (20%
accessibility) are included.

‘‘BURIED’’ This subset is complementary to ‘‘SURFACE.’’
‘‘WELL ORDERED’’ In the case of crystallographically

determined target structures, only parts of structure
that are not affected by the uncertainty associated with
thermal motion or disorder are considered.

‘‘RELIABLE SIDE CHAINS’’ Segments of side chains
deemed unreliable crystallographically (e.g., a rotation
of 180 degrees could be undetectable) are excluded from
Cartesian and angular RMSD calculations.
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‘‘NO INTERMOL CONTACTS’’ Parts of target structure
that are not affected by interactions with neighboring
molecules (crystal contacts).

Additional Measures Used When a Homologous
Structure was Available at Time of Prediction
(Comparative Modeling)

To evaluate comparative modeling predictions, addi-
tional criteria have been developed based on the presence
of an alignment with structural homologue(s). These,
taken together with the basic measures just described,
were designed first to isolate the different stages in
comparative modeling, so that performance of methods
addressing each can be assessed, and second to allow focus
on segments of structure that are either relatively easy
or more difficult to model. The design considerations
have been previously discussed7 and here we only briefly
summarize the additional measures and subsets of struc-
ture. Alignment between target and structural homolo-
gue that is closest by sequence (principal parent) and
with other potential template structures was done with
DALI.

The additional comparative modeling measures include
RMSD over Ca’s calculated for three different sets of
atoms:
(a) alignable region between target and principal parent;
(b) the same region for target and model;
(c) remaining region for target and model (loops).

Additional subsets of structure for comparative model-
ing include:
‘‘CHANGED ANGLES’’ Angles that are rotamerically dif-

ferent from the corresponding ones in the parent struc-
ture.

‘‘SHIFTED CHAIN’’ Segments of target structure that
differ in position in the global alignment with parent by
more than a cutoff (1 Å).

‘‘ALTERNATIVE PARENT’’ Segments of target structure
for which selection of a parent other than the one closest
by sequence is preferred (better by more than 1 Å).

Fig. 1. Summary of alignment accuracy plots for all 3D predictions on
target T0049 (EstB, P. marginata). The number of correctly aligned
residues (see text) is shown in blue as a percentage of the total number of
residues in this target. The additional fraction of residues aligned within
1/-4 residues is shown in green, and the remainder of submitted
prediction in red. Such alignment plots provide an immediate measure of
the overall quality of predictions on a given target.

Fig. 2. An illustration of three representations of prediction quality: 3D
plots, identification of longest continuous high quality segments (LCS),
and largest superpositions (largest superimposable sets of residues)
under a specified cutoff (GDT) for a single prediction on target T0056
(DnaB helicase N-terminal domain, E. coli, PDB code 1jwe). A: RASMOL
Ca trace plot of the sequence-dependent model-target superposition
(using only the Ca atom pairs closer than 2.5 Å to obtain the superposi-
tion). Target and model structures are shown in cyan and red, respec-
tively. Corresponding atoms closer than 6 Å are shown in yellow. B:
Longest continuous segments expressed as percentage of the total
number of residues in the target structure. The three blue lines corre-
spond to segments superimposable under 1, 2, and 5 Å RMS deviation
respectively, with the uppermost line reflecting the largest cutoff value.
DSSP assignments of secondary structure in the target and model are
shown at the top of the plot, with helices in purple and strands in green. C:
Largest superimposable sets of residues. Three blue lines correspond to
the best fit for 5, 10, and 50 percent of the modeled structure, respectively.
Secondary structure assignments as in B. A group of three correctly
predicted helices (A, yellow) correspond to segments positioned approxi-
mately between residues 30 and 55 (two helices), and 65 and 80 (one
helix). Both LCS and GDT show that under the most generous cutoff in
either plot an additional helix (residues 83–93) may be fitted as well. Local
secondary structure is predicted well throughout the main chain, even in
the region where tertiary structure prediction is incorrect. Comparing LCS
and GDT plots allows to immediately identify if the observed structural
similarity is localized or if it extends to multiple regions in protein’s
sequence.
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‘‘SHIFTED SS UNITS’’ Secondary structure elements that
have significantly moved relative to the parent structure
(by more than 1 Å).

‘‘LARGE SHIFTS/INSERTIONS’’ ‘‘Loop’’ segments. In a
global alignment (DALI) between structures of target
and parent, residues with corresponding Ca distances
greater than cutoff (2.5 Å) are included. If fewer than
three residues exist between such segments, they are
included in a merged segment.

‘‘CORE’’This subset is complementary to ‘‘LARGE SHIFTS/
INSERTIONS.’’

‘‘LIGAND CONTACTS’’ Regions of structure that are in
contact with the ligand molecule(s). A cutoff of 6 Å
defines protein neighborhood for local model/target struc-
tural alignment. Subsequently, protein atoms in contact
with ligand (4 Å cutoff) are included in this subset.

RMSD details of loops

To specifically address modeling performance on indi-
vidual loops, Cartesian RMSD in both global and local
superposition is calculated on Ca, main chain, and all
atoms for each loop that contains at least three residues.

Figure 2. (Continued.)
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The loops are defined as above (‘‘LARGE SHIFTS/INSER-
TIONS’’). For a given loop, the completeness of a prediction
is also reported (NP, TN, PP).

Model refinement

To evaluate the success of refinement procedures, such
as energy minimization or molecular dynamics, parallel
submissions of refined models are accepted and fully
assessed. Relative change in the evaluated parameters
may be easily monitored in the prediction database.

Evaluation of confidence assessments

Estimation of a position-specific reliability is an impor-
tant factor contributing to the potential usefulness of a
model, especially in comparative modeling. It is unfortu-
nate that this aspect of prediction often is omitted. Submis-
sion formats encourage confidence estimation at atomic
level with results reported for Ca’s, main chain, side chain,
and all atoms. The measures used to evaluate accuracy of
error estimates are:
(a) D-E—mean deviation between actual distance in atomic

positions (D) and the corresponding estimate (E), be-
tween model and target in Angstroms;

(b) D-E / D1E—mean value of the normalized deviation.
Exact definitions are given on the Prediction Center web
page.

New Analytical Tools and Graphical
Representations
Alignment accuracy

Evaluation of alignment accuracy has been redefined for
CASP3. Previously, predictors’ defined alignments of tar-
get sequence with a template structure were used to assess
the correctness of alignment, both in comparative model-
ing and in fold recognition. With abandoning of specific
prediction categories and corresponding simplification of
submission formats, alignment evaluation was based on
direct comparison between model and target structures.
The added benefit is that comparisons with homologous
structures do not need to be invoked. Furthermore, align-
ment accuracy defined in such a way is applicable to all 3D
predictions, including models generated ab initio.

New alignment accuracy measures are based on the
lowest RMSD sequence-independent superposition cur-
rently generated by the DALI server. For each residue in
the model structure the closest residue in the target is
identified. The number of correctly aligned residues is
defined as the number of residues in the model for which
the closest residue in the target is the correct one, and the
distance between them is less than 3.8 Angstroms (Ca-Ca
distances). The number of positions for which the model
residue is closest to a residue in the target within 1/-4
residues, and the distance is less than 3.8 Angstroms, is
also reported (Fig. 1).

Such defined alignment accuracy is also an excellent
general measure of prediction quality, applicable in a wide
range of prediction difficulty, ranging from comparative
modeling to ab initio targets (cf. discussion in Venclovas et
al., this volume8).

RASMOL plots

We have used the RASMOL package (written by Roger
Sayle) to couple an approximate representation of predic-
tion quality with 3D visualization of model and target
structures. Superpositions are made in both sequence-
dependent and sequence-independent (DALI) manner. Dis-
played Ca-trace structures may be colored by prediction
quality with a user-specified cutoff (Fig. 2a).

Šali plots

Plots directly comparing deviations between target and
model with deviations between target and principal parent
proved to be a very useful estimate of prediction quality in
comparative modeling. First suggested in the CASP pro-
cess by Andrej Šali,9 they illustrate how a particular
prediction fares when compared with a ‘‘straightforward’’
copying from the nearest homologous structure. It has to
be emphasized that correct copying of structure can only
be achieved after a correct alignment with the parent has
been generated, and this remains a significant difficulty,
even in comparative modeling. We generate Šali plots for
predictions on all comparative modeling targets.

Identifying Longest Continuous Superimposable
Segments of Residues (LCS)

The next two measures are to some extent complemen-
tary and have been designed to facilitate the detection of
good and bad regions in the modeled structure. Our LCS
algorithm identifies all the continuous segments of resi-
dues in the prediction deviating from the target by no more
than a specified Ca RMSD cutoff. For a given residue, we
consider all segments containing that residue and assign it
to the longest one. The measure may be used to evaluate
all 3D predictions. For CASP3 we introduced graphical
rendering of this data as a function of residue position
along the main chain and plotting segment lengths as
percentage of target structure. The plots provide an intui-
tive representation of sets of residues in the model that are
characterized by similar spatial shifts relative to the
target structure, typically reflecting the elements of second-
ary structure in that protein. Taken together with informa-
tion on chain topology, they provide a reasonably complete
representation of the quality of a prediction (Fig. 2b).

Identifying Largest Superimposable Sets of
Residues (GDT)

For each residue in the prediction our algorithm identi-
fies the largest set of residues containing that residue and
deviating from the target by no more than a specified Ca
distance cutoff (Global Distance Test). In comparison with
LCS, which provides numerically exact results, generation
of maximal sets that are not necessarily continuous along
the main chain is only approximate. The algorithm how-
ever uses a very large number of different superpositions
providing consistently reliable results. Details of the imple-
mentation are described at the Prediction Center website.
As with LCS, this measure may be used to evaluate any 3D
prediction, regardless of the extent of relatedness with a
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known structure. Having generated the largest superimpos-
able sets for all the residues in the prediction, a variety of
result presentation schemes may be considered. At present
we provide summaries for all predictions on a given target
with plots of distance cutoffs versus the set size. For a
particular prediction, an option specifying the distance
cutoff under which 5, 10, and 50 percent of the modeled
structure can be fitted is also used for graphical represen-
tations (Fig. 2c).

Evaluations of Secondary Structure Predictions

We calculate scores according to both Q3 and Sov,10 and
also report fractions of the target sequence submitted in
each prediction. Q3 is a simple and probably the most
commonly used measure for the evaluation of secondary
structure predictions. With Q3, evaluations are made
residue-by-residue, often providing a misleading assess-
ment of the predicted secondary structure segments. Rather
than making a per residue assessment of conformational

state, Sov places the emphasis on correct prediction of
secondary structure segments, i.e., their type and location.
We have evaluated and discussed the performance of Q3
and Sov using both the designed test cases as well as
complete secondary structure prediction data accumulated
during CASP2.10,11 Here we demonstrate the difference
between the two measures using several examples of
predictions taken from CASP3 (Fig. 3).

Organization of the Website

Our website, located at http://PredictionCenter.llnl.gov,
provides comprehensive access to prediction targets, files
containing original predictions, and evaluations made
using the criteria and methods discussed in this paper. The
data are available via an adjustable interface that allows
generation of user-defined comparison tables. Result tables
may be specified by selecting targets, prediction groups,
and measures to be displayed. The site also allows access
to visualization tools described above. Data for all three

Fig. 3. A comparison of DSSP-generated secondary structure assign-
ments for Bacillus subtilis SinI and SinR (target structures T0065 and
T0064), and several predictions submitted during CASP3. Both Q3 and
Sov scores are reported. Results for sequence fragments for which
crystallographic data is missing could not be compared. In the case of
SinI, Q3 assigns equal scores to an essentially correct and a structurally
misleading prediction. In SinR, prediction which correctly identifies and
places all of the secondary structure elements is scored by Q3 lower than

the assignment which predicts helices across joining loops and in one
case a strand instead of a helix. Assignments of secondary structure in the
four examples shown have been extracted from predictions of 3D
structure. These examples do not represent extremes in prediction
quality—both better and worse predictions have been submitted on these
two targets. Prediction groups 96 and 163 used ab initio, while groups 262
and 273 used fold recognition methods.
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CASP prediction experiments are available, including
earlier CASP predictions evaluated with CASP3 criteria.
For comparison and methods development purposes, it is
possible to submit and evaluate models on all targets that
were part of the CASP process to date.

The website provides four main modes of access to
evaluation data:

1. User-defined comparison tables with links to graphical
representations. This option allows specification of:
A) Prediction experiment (CASP1, 2, or 3)
B) Category of prediction data

i) 3D models (Ab Initio and Fold Recognition)
ii) Extended evaluation for Comparative Modeling

iii) Evaluation of Secondary Structure predictions
C) Targets and Prediction Groups
D) Evaluation criteria and subsets of structure

Generated results tables then provide links to graphi-
cal tools as follows:
A) Plots of longest continuous segments (LCS) for each

prediction
B) Plots of largest superpositions (GDT) between pre-

dicted and target structures
C) Šali plots
D) RASMOL plots of predicted and target structures in

i) all Ca sequence-dependent superposition
ii) iterative sequence-dependent superposition

iii) DALI sequence-independent superposition
E) RASMOL plots of superimposed target and parent

structures (for Comparative Modeling targets)
F) Comparisons of residue by residue secondary struc-

ture assignments between predicted and target
structures.

Links to summary plots for a given target (see 3. below)
are also provided.

2. Tables with default evaluation data for each prediction.

To simplify navigation through evaluation results, a
default set of measures and subsets of structure are
used to generate the comparison tables.

3. Summary graphics organized by prediction target.

This option allows quick comparisons of all predictions
submitted on a given target structure. Three types of
graphs are presently available:
A) Alignment accuracy plots
B) GDT plots
C) Sov and Q3.

4. Links to results generated by other evaluation meth-
ods.
A) Structural alignment summary data generated with

the ProSup software (sequence-independent super-
position,12) by Manfred Sippl’s group.

B) RMSD versus coverage plots generated by Tim
Hubbard.

DISCUSSION

The CASP process has turned out to be a strong catalyst
for the development of techniques for prediction evalua-
tion. A number of new and specialized methods have been
suggested, developed, and tested in practice. These have
greatly enhanced our ability to extract specific information
from predictions. Ultimately, a set of selected, agreed
upon, and to a large extent automatic evaluation tools are
sought. In the discussion, we focus primarily on one
particular aspect of the evaluation methods: the superposi-
tion techniques behind the large majority of evaluative
approaches in structure prediction.

To effectively guide the development of new and better
prediction techniques, we need assessment tools appli-
cable to a wide range of prediction problems. While
evaluation issues in comparative modeling seem to be
adequately addressed with presently available methods,
fold recognition and ab initio are less finalized. In general,
current evaluation methods tend to work worse as the
dissimilarity between target and predicted structures
increases. The most radical example is when only the
general architecture of the target structure is correctly
identified. In CASP3, both threading and ab initio tech-
niques were sometimes successful in this respect, while
failing in others. To date, there are no automatic proce-
dures that can reliably classify structures in terms of
architecture.

For difficult targets, the question to ask is whether at
least part of the structure is predicted correctly. One
answer is to map out all possible areas of local similarity.
The LCS method accomplishes this goal in terms of
segments identified along the main chain of the target
structure. An important property of this measure is that
the answers are by definition numerically optimal, i.e., no
approximations are used to arrive at the results. The
shortcoming of this method is that it is able to evaluate the
quality of a set of predicted segments only when they are
adjacent in sequence. The GDT algorithm, on the other
hand, addresses the problem of identifying the largest, not
necessarily continuous sets of superimposable residues.
Comparing LCS and GDT plots allows one to determine
whether correct tertiary associations in the model struc-
ture extend beyond regions neighboring in sequence. Both
of these algorithms, as well as the one implemented by Tim
Hubbard, also discussed in this volume, use sequence-
dependent superpositions. In the case for comparative
modeling and ab initio predictions, this is usually appropri-
ate. There may be predictions, however, where segments of
structure are modeled correctly but the sequence-to-
structure alignment is flawed. This is often the case in fold
recognition where detecting similar but incorrectly aligned
structures requires a sequence-independent model-to-
target alignment technique.

Finally, all of the structure superposition methods dis-
cussed here so far are of the rigid body type. These, when
not carefully applied, are likely to produce misleading
results for multi-domain structures, where one domain is
shifted relative to another. Also, similarity between mod-
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els characterized by a gradual deformation of one struc-
ture versus another is not very well described by this
approach. In such cases, a method such as SSAP,13 which
scores the similarity of the structural environment at each
residue position, may be more effective.

Important aspects of prediction analyses are the meth-
ods of displaying the results. Effective graphics are ex-
tremely helpful when multiple features of a prediction
have to be analyzed or many predictions have to be
compared. In this paper we have presented some of the
options we think are particularly effective. Other useful
ways of displaying evaluation results may be found else-
where in this volume.

As a community, over the last five years we have moved
the methods of prediction evaluation forward considerably.
Although a lot still remains to be done, we hope the
methods described here and elsewhere in this volume will
provide essential data for the next round of discussion
regarding evaluation criteria to be held prior to CASP4.
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