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    Chapter 3   

 Methods for Sequence–Structure Alignment       

           ̌Ceslovas   Venclovas          

  Abstract 

 Homology modeling is based on the observation that related protein sequences adopt similar three-dimensional 
structures. Hence, a homology model of a protein can be derived using related protein structure(s) as 
modeling template(s). A key step in this approach is the establishment of correspondence between residues 
of the protein to be modeled and those of modeling template(s). This step, often referred to as sequence–
structure alignment, is one of the major determinants of the accuracy of a homology model. 

 This chapter gives an overview of methods for deriving sequence–structure alignments and discusses 
recent methodological developments leading to improved performance. However, no method is perfect. 
How to fi nd alignment regions that may have errors and how to make improvements? This is another focus 
of this chapter. Finally, the chapter provides a practical guidance of how to get the most of the available 
tools in maximizing the accuracy of sequence–structure alignments.  

  Key words:   Homology modeling ,  Protein structure ,  Sequence profi les ,  Hidden Markov models , 
 Alignment accuracy ,  Model quality    

 

 At present, homology or comparative modeling is the most accurate 
and therefore the most widely used protein structure prediction 
approach. Homology modeling is based on the empirical observa-
tion that evolutionary-related proteins (to be more precise—
evolutionary-related protein domains) tend to have similar 
three-dimensional (3D) structures. Moreover, protein structural 
features often remain preserved long after the sequence signal is 
lost to mutations, insertions, and deletions. Therefore, 3D structure 
is considered to be the most robustly conserved feature of homolo-
gous proteins, certainly more conserved than the sequence or 
molecular function. Although there are some convincing excep-
tions to this rule  (  1  ) , it still holds for the absolute majority of cases. 

  1.  Introduction
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 Homology modeling is used to build a 3D structural model of 
a protein (modeling target) on the basis of the alignment of its 
amino acid sequence with a related protein of known structure 
(template). Any homology modeling approach consists of four main 
steps: (1) identifi cation of related proteins that have experimentally 
determined structures and therefore can be used as structural tem-
plates for modeling, (2) mapping corresponding residues between 
the target sequence and template structure, the process often 
referred to as sequence–structure alignment, (3) generating a 3D 
model of a target protein on the basis of the sequence–structure 
alignment, and (4) estimating the correctness of the resulting 
model. The whole process may be iterated (restarting at any of the 
steps) until the satisfactory estimated quality is obtained or until 
the model can no longer be improved (Fig.  1 ).  

 This chapter focuses on the second step in the homology mod-
eling process—producing sequence–structure alignment—and will 
only touch upon other steps as necessary.  

 

 Once a suitable structural homolog (template) is identifi ed, the 
accurate mapping of target sequence onto template structure 
becomes a major determinant of the resulting model quality. 

  2.  Sequence–
Structure 
Alignment Problem

Protein sequence
(modeling target)

1. Detection and selection of homologs
having known 3D structure (templates)

2. Alignment of modeling target
with structural template(s)

4. Assessment of model quality

Final 3D model

Sufficient 
quality?

Yes

No

3. Construction and optimization of a 3D model

  Fig. 1.    Homology modeling fl owchart.       
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What does it mean to produce an accurate sequence–structure 
mapping/alignment? Let us suppose that we know 3D structures 
of both the template and the target. If we superimpose those two 
structures, we will find out that for structurally similar regions 
of both proteins we can derive an unequivocal correspondence 
between residues. The sequence–structure alignment step in 
homology modeling aims to reproduce this correspondence as 
accurately as possible, but without the benefi t of knowing the “real” 
(experimental) structure of the modeling target. Obviously, unless 
target and template are very closely related, there may be regions 
displaying signifi cant structural differences between the two. These 
structurally dissimilar regions most often result from insertions, dele-
tions, or extensive changes in the amino acid sequence. Therefore, 
in such regions, the assignment of residue correspondence is not 
always straightforward and sometimes plainly meaningless. In other 
words, an accurate sequence–structure alignment should include 
all the structurally and evolutionary equivalent residue pairs, at the 
same time leaving out structurally different regions. As the number 
of experimentally determined structures continues to grow steadily, 
in many cases a modeling target can be aligned not only to a single 
but also to a number (sometimes very large) of available structural 
templates. Often, an accurate alignment over the entire target length 
cannot be achieved with the same template; instead, different target 
regions (sometimes quite short) can be aligned to different templates. 
This provides opportunity for the model improvement but at the 
same time introduces additional complexity into the modeling 
procedure. 

 The sequence–structure alignment problem can be subdivided 
into the three subproblems: (1) generating initial sequence–struc-
ture alignment, (2) fi nding out which alignment regions may need 
adjustment, and (3) improving the alignment.  

 

 Usually, the construction of initial sequence alignment between 
the target and the template coincides with the fi rst step in homology 
modeling (Fig.  1 ), template identifi cation. Therefore, template 
identifi cation will be discussed along with the sequence–structure 
alignment. Since for the modeling target only amino acid sequence 
is known to start with, sequence comparison is the primary means 
to detect related protein(s) having known experimental 3D struc-
ture. If aligned sequences share a statistically signifi cant sequence 
similarity (the similarity which could not be expected by chance), 
it is considered that the sequences share common evolutionary 
origin. It further means that their 3D structures can also be expected 
to be similar. 

  3.  Sequence-
Based Methods 
for Sequence–
Structure 
Alignment
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 Depending on the evolutionary distance between proteins, 
sequence-based methods of different complexity may be required 
to detect their relationship (Fig.  2 ). These methods can be grouped 
on the basis of the increasingly complex sequence information 
they use: 

    1.    Alignment of a pair of sequences  
    2.    Profi le–sequence and hidden Markov model (HMM)–sequence 

alignments  
    3.    Profi le–profi le and HMM–HMM alignments.     

  Methods that detect homology through the alignment of a pair of 
sequences (pairwise alignment) have emerged earliest and are con-
ceptually the simplest. They use only amino acid sequences of two 
proteins, a scoring table for residue substitutions and an algorithm 
to produce an alignment. Usually, pairwise alignment methods 
report the statistical signifi cance of the resulting alignments, 
allowing to use them for sequence database searches. Undoubtedly, 
the most popular database search tool based on pairwise alignment 
is BLAST  (  2,   3  ) . It is very fast and has a solid statistical foundation 
for homology inference, provided by the incorporation of the Karlin–
Altschul extreme value statistics  (  4  ) . The integration of BLAST 
suite of programs together with major sequence databases at the 
National Center for Biotechnology Information (NCBI;   http://www.
ncbi.nlm.nih.gov/    ) is another important factor contributing to the 
popularity of BLAST. FASTA  (  5  )  and Ssearch  (  6,   7  )  are two other 
widely used pairwise alignment and database search methods. 
Pairwise sequence comparison programs can provide a fast initial 
estimate of the diffi culty level of homology modeling. They can be 
adequate for detecting evolutionary-related proteins that share 
over 25–30% identical residues, the range of sequence similarity that 

  3.1.  Pairwise 
Sequence Alignment 
Methods

“Midnight” “Twilight”

Sequence identity, %
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Sequence-Sequence

Profile (HMM)-Sequence
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  Fig. 2.    Different types of homology detection and alignment methods are most effective 
for different sequence similarity ranges. Sequence similarity is partitioned into three 
approximate intervals corresponding to the decreasing diffi culty of identifying homology 
from sequence: the “midnight” zone (<15% sequence identity), the “twilight” zone (~15–25%), 
and the “daylight” zone (>25%).       
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may be called a “daylight” zone (Fig.  2 ). However, in many cases, 
corresponding alignments need improvements. Only if aligned 
sequences are over 40–50% identical to each other and have few or 
no gaps, it can be expected that alignments may be accurate in a 
structural sense. 

 Despite the limited and ever decreasing use of pairwise sequence 
comparison to obtain sequence–structure alignments for direct use 
in modeling, this is the initial step essentially in all of the more 
sophisticated sequence comparison techniques that utilize infor-
mation from multiple related sequences. Therefore, the improve-
ments in the initial pairwise comparison step may have a profound 
effect on the fi nal results. Recently, a signifi cant step forward was made 
by the development of the context-specifi c BLAST (CS-BLAST) 
 (  8  ) . Unlike the original BLAST, which treats sequence positions 
independently of each other, CS-BLAST considers the substitution 
probability at a particular position to depend on the neighboring 
residues (sequence context). This methodological innovation led 
not only to a higher sensitivity in homology detection but also to a 
signifi cant improvement of the alignment quality  (  8  ) . CS-BLAST 
may be especially promising for application to  singleton sequences  
(sequences without detectable homologs), because the lack of 
related sequences precludes the use of methods based on profi le–
sequence or profi le–profi le alignments that are discussed next.  

  When the evolutionary relationship is more distant (sequence simi-
larity is fading into the “twilight” zone; Fig.  2 ), the pairwise sequence 
comparison may not be suffi cient to reliably identify homology 
and to produce an accurate alignment. In such cases, methods that 
use information from aligned multiple sequences represented by 
either sequence profi les  (  9  )  or HMMs  (  10  )  can be much more 
effective. The power of profi les and HMMs stems from a compre-
hensive statistical model generated for the aligned group of related 
sequences. This model indicates which positions are conserved 
and which are variable and where insertions or deletions are most 
likely to occur. Therefore, a comparison of a profi le with database 
sequences can both provide more sensitive detection of homologs 
and generate more accurate alignments. Currently, the most widely 
used profi le–sequence comparison method is position-specifi c 
iterated BLAST (PSI-BLAST)  (  3  ) . PSI-BLAST uses a multiple 
alignment of the highest-scoring matches returned in an initial 
BLAST search to construct a position-specifi c scoring matrix 
(PSSM). The constructed PSSM replaces the generic substitution 
matrix (e.g., BLOSUM or PAM series) in a subsequent round 
of the BLAST search. This process can be repeated a number of 
times. Every time, new sequences detected above the predefi ned 
threshold are used to adjust the profi le. Thus, with each iteration 
more and more distantly related sequences are included making 
the profi le more inclusive yet still specifi c for the sequence family. 

  3.2.  Profi le–Sequence 
and Hidden Markov 
Model–Sequence 
Alignment Methods
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This makes PSI-BLAST a very powerful sequence search and 
comparison tool that can often detect and align homologs having 
sequence identities of 15% or even lower (both “twilight” and 
“midnight” zones of sequence similarity). Since the elementary 
step in PSI-BLAST is based on BLAST, it also treats positions as 
being independent from each other. Just like CS-BLAST, context-
specifi c iterated BLAST (CSI-BLAST)  (  8  )  has been shown to out-
perform PSI-BLAST, suggesting that the incorporation of sequence 
context into sequence or profi le comparisons is a promising avenue 
for improvements. 

 HMMER  (  11  )  and sequence alignment and modeling (SAM) 
 (  12  )  tool suites are the best known HMM–sequence comparison 
methods. HMMs are similar to sequence profi les, but they use 
probability theory to guide how all the scoring parameters should 
be set. HMMs also have additional probabilities for insertions and 
deletions at each position of the profi le. The latter feature of HMMs 
is important in trying to better represent properties of protein 
sequence evolution. It is obvious that the probability of insertions 
and deletions within the protein sequence is very much position-
dependent because of varying structural and/or functional 
constraints. While insertions/deletions may be detrimental within 
the structural core, they are more likely to be tolerated within 
solvent-exposed structurally variable regions such as loops. HMMs, 
however, have important limitations too. Just like sequence 
profi les (PSSMs), HMMs treat a particular position independent 
of all the other positions, and thus are not able to capture any higher-
order correlations that may exist (and we know that they do!) in 
protein sequences. Despite seeming methodological advantages, 
HMM–sequence-based methods have not been used as widely as 
PSI-BLAST. Why so? For one, so far HMM–sequence comparison 
methods have been much slower than PSI-BLAST. Besides, it has 
been diffi cult to devise an iteration procedure for HMMs that 
would work as smoothly and seamlessly as in PSI-BLAST. However, 
the HMM fi eld has made signifi cant advances. For example, SAM-
T08  (  13  ) , the latest protein structure prediction method based on 
SAM tool suite, features several iterative procedures. The use of 
heuristics has also recently helped to achieve a signifi cant speedup 
and to introduce an iterative search protocol for HMMER  (  14  ) . 
Reportedly, HMMER is now roughly on a par with BLAST according 
to the speed of database search, and its iterative search procedure 
(jackhmmer) rivals PSI-BLAST in sensitivity and alignment accuracy.  

  Evolutionary relationships that are too distant to be detected either 
by pairwise sequence or by profi le–sequence (HMM–sequence) 
comparisons (“midnight” zone; Fig.  2 ) may still be identifi ed by 
methods that are based on profi le–profi le or HMM–HMM align-
ments. These methods add another level of complexity by compar-
ing two sequence profi les (HMMs) instead of a profi le (HMM) 

  3.3.  Profi le–Profi le 
and HMM–HMM 
Alignment Methods
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with a single sequence. In other words, instead of asking the question 
of whether a sequence belongs to the family, these methods are 
asking the question of whether two sequence families are evolu-
tionary related. This generalization brought about a previously 
unseen sensitivity of homology detection and, albeit less dramatic, an 
improvement in the alignment accuracy  (  15–  20  ) . Although in sen-
sitivity and alignment accuracy they still lag behind the methods 
based on 3D structure comparison such as DALI  (  21  ) , it is possible 
to see examples of the opposite  (  17  ) . Some of the best performers 
among methods based on HMM–HMM comparison include 
HHsearch  (  16  )  and PRC  (  19  ) , while COMPASS  (  15  ) , COMA  (  17  ) , 
and PROCAIN  (  22  )  represent those based on profi le–profi le 
comparison. At present, both methodologies (profi le and HMM-
based) are being actively developed, and it is not clear whether one 
of the two will be dominating in the future. There are pros and 
cons on both sides. Traditionally, sequence profi le–profi le alignments 
have been using fi xed gap penalties, while the HMM framework 
naturally accommodates more biologically relevant position-
dependent gap penalties. Nonetheless, position-dependent gap 
penalties can be successfully implemented in profi le–profi le methods, 
as recently has been demonstrated in COMA  (  17  ) . The Karlin–
Altschul statistics introduced in BLAST and PSI-BLAST can be 
more easily extended for profi le–profi le than for the HMM–HMM 
comparison. On the other hand, recently a probabilistic model of 
local sequence alignment amenable to the Karlin–Altschul statistics 
has been introduced in HMMER. This has signifi cantly reduced 
the computational cost for statistical signifi cance estimation with-
out sacrifi cing the accuracy  (  23  ) . Both profi le–profi le and HMM–
HMM methods consider sequence positions to be independent of 
each other, but as demonstrated by the success of CS/CSI-BLAST 
 (  8  ) , this is clearly a non-optimal representation of protein sequence 
information. Indirectly, the importance of positional context in the 
profi le–profi le (HMM–HMM) comparison has been demonstrated 
by a boost in performance with the incorporation of additional 
information  (  16,   22  ) . The largest impact has been observed by 
the inclusion of the secondary structure (SS) information, which 
may be considered as a particular representation of context depen-
dency. Thus, a further improvement of the context-specifi c scoring 
may be a promising direction for increasing homology detection 
sensitivity and alignment accuracy. 

 A brief summary of different types of alignment methods is 
provided in Table  1 .   

  Multiple sequence alignment (MSA) methods represent a distinct 
case as they are not designed to detect homologous sequences. 
Instead, they align a set of homologous sequences already identi-
fi ed by other methods, such as those discussed above. MSA meth-
ods may be useful in at least two different ways. First, these methods 

  3.4.  Multiple Sequence 
Alignment Methods
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may be used to improve the quality of MSAs, from which profi les 
(HMMs) for homology search and alignment are constructed. 
Second, if both target and template are in the set of sequences to 
be aligned, target-template alignment can be directly obtained in 
the context of resulting MSA. 

 Given a set of sequences, MSA methods aim to construct an 
alignment in which columns represent evolutionary (structurally) 
equivalent residues. Although in theory dynamic programming 
algorithms for pairwise alignment can be extended for computing 
an optimal alignment of multiple sequences, they are too compu-
tationally demanding to be practically useful. As a result, most 
current techniques use various approximations and heuristics. 
These methods are not guaranteed to derive an optimal MSA, 
but in practice they can often produce good alignments using 
modest computational resources. Most of the modern MSA tools 
use heuristics known as  progressive alignment . In this strategy, an 
approximate alignment guide tree is fi rst constructed based on 
pairwise sequence similarities. Using this guide tree, the most closely 
related sequences are aligned fi rst. Next, these subalignments are 
aligned to each other until all sequences are incorporated into MSA. 

   Table 1 
  Sequence-based methods for homology detection and sequence–structure 
alignment construction   

 Method  Type  Address 

 BLAST  Sequence–Sequence    http://blast.ncbi.nlm.nih.gov/     

 FASTA/Ssearch  Sequence–Sequence    http://fasta.bioch.virginia.edu/     
   http://www.ebi.ac.uk/Tools/sss/fasta/     

 CS-BLAST  Sequence (profi le)–Sequence    http://toolkit.lmb.uni-muenchen.de/cs_blast/     

 PSI-BLAST  Profi le–Sequence    http://blast.ncbi.nlm.nih.gov/     

 CSI-BLAST  Profi le–Sequence    http://toolkit.lmb.uni-muenchen.de/cs_blast/     

 HMMER  HMM–Sequence    http://hmmer.org/     

 SAM  HMM–Sequence    http://compbio.soe.ucsc.edu/HMM-apps/     

 COMPASS  Profi le–Profi le    http://prodata.swmed.edu/compass/     

 PROCAIN  Profi le–Profi le + additional 
sequence features + SS a  

   http://prodata.swmed.edu/procain/     

 COMA  Profi le–Profi le    http://www.ibt.lt/bioinformatics/coma/     

 HHsearch  HMM–HMM + SS a     http://toolkit.lmb.uni-muenchen.de/hhpred/     

 PRC  HMM–HMM    http://supfam.org/PRC     
   http://www.ibi.vu.nl/programs/prcwww/     

   a Secondary structure  

http://blast.ncbi.nlm.nih.gov/
http://fasta.bioch.virginia.edu/
http://www.ebi.ac.uk/Tools/sss/fasta/
http://toolkit.lmb.uni-muenchen.de/cs_blast/
http://blast.ncbi.nlm.nih.gov/
http://toolkit.lmb.uni-muenchen.de/cs_blast/
http://hmmer.org/
http://compbio.soe.ucsc.edu/HMM-apps/
http://prodata.swmed.edu/compass/
http://prodata.swmed.edu/procain/
http://www.ibt.lt/bioinformatics/coma/
http://toolkit.lmb.uni-muenchen.de/hhpred/
http://supfam.org/PRC
http://www.ibi.vu.nl/programs/prcwww/
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Thus, the progressive alignment substitutes the task of MSA into a 
series of pairwise alignments. ClustalW  (  24  ) , one of the earliest 
programs and still a very popular choice, is a representative of pro-
gressive alignment methods. The main drawback of the progressive 
alignment strategy is that errors made early on in the construction 
of guide trees or pairwise alignments (especially in the initial stages) 
cannot be corrected and tend to propagate in the entire alignment. 
Thus, ClustalW can produce good alignments for closely related 
sequences, but alignments for divergent sequence sets may be poor. 
Therefore, a number of approaches have been devised to avoid the 
problems associated with an application of progressive alignment. 
For more details on recent methodological and algorithmic impro-
vements, the reader is referred to recent reviews  (  25–  27  ) . Here, 
only several methods that had been reported to perform well in 
various benchmarks are briefl y discussed. 

 One of the strategies to deal with errors in progressive align-
ments is to perform an iterative refi nement. MAFFT  (  28  )  and 
MUSCLE  (  29  )  are two representative MSA methods that use such 
an iterative refi nement strategy. Both are very fast and fl exible: 
depending on the number of sequences the balance between the 
accuracy and speed can be easily adjusted. 

 Another strategy to improve initial progressive alignments is to 
use consistency information. The consistency concept is very simple. 
Let us suppose that we have three sequences (A, B, and C) and the 
corresponding pairwise alignments. If residue A i  is aligned to resi-
due B j  and residue B j  is aligned to residue C k , this implies that in 
A-C alignment A i  should be aligned with C k . In other words, pair-
wise alignments induced by multiple alignments should be consis-
tent. This transitivity condition is taken into account in scoring 
the alignment of two sequences (or group of sequences) by consid-
ering the information of their alignment to other sequences not 
involved in pairwise merge. T-coffee  (  30  )  and ProbCons  (  31  )  are 
examples of methods that make use of consistency-based scor-
ing. In general, consistency-based methods are more accurate than 
those based on iterative refi nement, but are more computationally 
demanding. However, in some cases, such as in recent versions of 
MAFFT  (  32  ) , a simpler version of consistency measure has helped 
to keep the program fast. While being much faster, MAFFT now 
rivals the accuracy of both T-coffee and ProbCons  (  33  ) . 

 Other strategies to improve the alignment accuracy include 
combination of several methods, as in M-coffee  (  34  ) , or the incor-
poration of additional information. The additional information 
may be evolutionary (e.g., additional homologous sequences) or 
structural, since a 3D structure evolves more slowly than a sequence. 
For example, the MAFFT package has an option to add close 
homologs  (  35  )  detected using a BLAST search to improve the align-
ment accuracy of the initially submitted set of multiple sequences. 
One of the recently developed programs, PROMALS  (  36  ) , uses a 
number of sources for additional information. First, it detects 
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sequence homologs with PSI-BLAST and uses the obtained 
profi les to predict secondary structure. Next, profi le–profi le com-
parisons enhanced with predicted secondary structures are used in 
the alignment processes. If the 3D structural information is available, 
it can also be combined with sequence data within the consistency 
framework to improve accuracy of MSAs. The automatic incorpo-
ration of the available 3D structural information has been imple-
mented in programs such as PROMALS3D  (  37  ) , a successor of 
PROMALS, and 3DCoffee/Expresso  (  38,   39  ) . 

 The MSA methods discussed here are summarized in Table  2 . 
It should be emphasized that, depending on the situation, different 
MSA methods may be optimal. In general, when sequences to be 
aligned are fairly similar (over 35% sequence identity; the “daylight” 
zone), any method is likely to produce an accurate alignment. The 
alignment accuracy starts deteriorating when sequence similarity 
falls into the “twilight” zone (<25%) and/or the number of sequences 
is small. In such cases, despite being slower, methods that use addi-
tional sequence and/or structure information may be more suitable.    

 

 A growing number of contemporary modeling methods derive 
sequence–structure mapping (alignment) by combining multiple 
sequence and structure features. Moreover, often a number of 

  4.  Hybrid Methods, 
Fully Integrated 
Automatic Servers 
and Meta-servers

   Table 2 
  Multiple sequence alignment methods   

 Method  Type of information used  Address 

 ClustalW  Sequence    http://www.clustal.org/     

 MAFFT 
 MAFFT-homologs 

 Sequence 
 Sequence + homologs 

   http://mafft.cbrc.jp/alignment/
software/     

 MUSCLE  Sequence    http://www.drive5.com/muscle/    , 
  http://www.ebi.ac.uk/Tools/
muscle/index.html     

 ProbCons  Sequence    http://probcons.stanford.edu/     

 PROMALS  Sequence + homologs + SS a     http://prodata.swemd.edu/promals/     

 PROMALS3D  Sequence + homologs + SS a  + 3D b     http://prodata.swemd.edu/promals3d/     

 T-coffee 
 M-coffee 
 3DCoffee/Expresso 

 Sequence 
 Consensus 
 Sequence + 3D b  

   http://www.tcoffee.org/     

   a Secondary structure 
  b Three-dimensional structure  

http://www.clustal.org/
http://mafft.cbrc.jp/alignment/software/
http://mafft.cbrc.jp/alignment/software/
http://www.drive5.com/muscle/
http://www.ebi.ac.uk/Tools/muscle/index.html
http://www.ebi.ac.uk/Tools/muscle/index.html
http://probcons.stanford.edu/
http://prodata.swemd.edu/promals/
http://prodata.swemd.edu/promals3d/
http://www.tcoffee.org/
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alignments with multiple templates or their fragments are considered 
simultaneously in deriving protein models based on homology. Even 
the concept of sequence–structure alignment sometimes becomes 
blurred because the derived fi nal model cannot be easily attributed 
to one or more explicit sequence–structure alignments. Another 
popular trend is the use of meta-approaches. By combining 
results of different algorithms, these approaches attempt to iden-
tify the closest structural templates and the most accurate sequence–
structure alignments. It would be impossible to provide an in-depth 
description for each of the multitude of methods presently avail-
able. Therefore, here only several popular methods that performed 
well in recent international blind trials of protein structure prediction 
known as CASP  (  40  ) , and at the time of writing were accessible as 
public Web servers on the Internet (Table  3 ), are briefl y discussed.  

 I-TASSER  (  41  ) , one of the top hybrid protein structure mod-
eling methods, uses combined results from multiple profi le–profi le 
comparison algorithms to detect suitable structural templates and 
to generate sequence–structure alignments. During next steps, the 
continuous fragments of initial alignments are reassembled into 
full-length models using iterative rounds of structure construction, 
model assessment, and refi nement. In a sense, I-TASSER repre-
sents a meta-server for distant homology detection combined with 
techniques for structure simulation and evaluation. A similar 
approach is used in pro-Sp3-TASSER  (  42  )  with the difference 
being mostly in the methods used for the construction of initial 
sequence–structure alignments and model evaluation. The SAM-
T08 server  (  13  )  uses the HMM-based sequence comparison 

   Table 3 
  Hybrid methods, fully integrated protein modeling servers and meta-servers   

 Method  Type  Address 

 I-TASSER  Server    http://zhanglab.ccmb.med.umich.edu/I-TASSER/     

 Pro-sp3-TASSER  Server    http://cssb.biology.gatech.edu/skolnick/webservice/
pro-sp3-TASSER/     

 Robbeta  Server    http://robetta.bakerlab.org/     

 Phyre  Server    http://www.sbg.bio.ic.ac.uk/~phyre/     

 MULTICOM  Server    http://casp.rnet.missouri.edu/multicom_3d.html     

 SAM-T08  Server    http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html     

 pGenTHREADER  Server    http://bioinf.cs.ucl.ac.uk/psipred/     

 GeneSilico  Meta-server    http://genesilico.pl/meta2/     

 Pcons.net  Meta-server    http://pcons.net/     

http://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://cssb.biology.gatech.edu/skolnick/webservice/pro-sp3-TASSER/
http://cssb.biology.gatech.edu/skolnick/webservice/pro-sp3-TASSER/
http://robetta.bakerlab.org/
http://www.sbg.bio.ic.ac.uk/~phyre/
http://casp.rnet.missouri.edu/multicom_3d.html
http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html
http://bioinf.cs.ucl.ac.uk/psipred/
http://genesilico.pl/meta2/
http://pcons.net/


66 Č. Venclovas

enriched with predicted local structural features to detect templates 
and to generate several alignments with each of them. Models are 
then assembled using the templates, the local structure predictions, 
the distance constraints, and the contact predictions. Robetta  (  43  )  
in the homology modeling regime uses profi le-based methods to 
detect templates. Next, an ensemble of sequence–structure align-
ments is generated, followed by structure simulation and refi ne-
ment. Perhaps the most important difference between Robetta and 
other methods discussed here is that in structure simulation it uses 
extensive conformational sampling coupled with physics-based all 
atom refi nement. However, this means that much larger computa-
tional resources are needed. Phyre  (  44  )  is based on an ensemble of 
algorithmic variants for remote homology detection (essentially an 
in-house meta-server) combined with model construction and 
selection. MULTICOM  (  45  )  implements a combination of data at 
multiple modeling levels including templates, alignments, and 
models. pGenTHREADER  (  46  ) , the latest implementation of 
GenTHREADER  (  47  ) , the classical threading method, uses a lin-
ear combination of profi le–profi le alignments with secondary-
structure-specifi c gap-penalties and classic pair- and solvation 
potentials. 

 There are also a number of meta-servers that apply a consensus 
approach either to select a best model or to construct a consensus 
model using the results obtained from different methods. GeneSilico 
 (  48  )  and Pcons.net  (  49  )  are among those meta-servers that are 
being continuously developed and updated. 

 Although now there are a large number of fully automated 
methods for homology modeling, one should keep in mind that 
the use of a more sophisticated procedure does not necessarily 
guarantee a better quality of the fi nal model. It has been observed 
over and over again that no matter which template-based tech-
niques are used to arrive at the fi nal model, the largest contribution 
to its quality comes from the optimal template selection and the 
improvement of sequence–structure alignment  (  50  ) . Therefore, a 
method that generates accurate alignments may sometimes out-
perform those with multiple layers of complexity. A vivid example 
of that was provided in CASP8  (  51  )  by HHpred  (  52  ) , a server imple-
mentation of the HHsearch method  (  16  ) . HHpred was ranked 
among top servers despite the fact that it was neither exploring 
alternative alignments, nor reassembling structures from fragments, 
nor using additional structural features and optimization proce-
dures. At the same time, HHpred was orders of magnitude faster 
than any other of the top servers. When just single domain targets 
were considered, it was second to only I-TASSER  (  52  ) . This example 
clearly shows that the optimal selection of template(s) and especially 
the accuracy of the sequence–structure alignment are of paramount 
importance.  
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 The construction of the initial sequence–structure alignment either 
through database searching or by using MSA methods on a predefi ned 
set of sequences is usually straightforward. However, unless the align-
ment between the modeling target and the structural template(s) 
is trivial (sequence identity over 40–50% and no or only few gaps), 
its reliability should be carefully evaluated. 

  In general, with the increase of evolutionary distance, both struc-
tures and sequences of homologous proteins become less similar, 
making homology detection more challenging. Intuition suggests 
that a lower sequence similarity might also be expected to result in 
the decreased accuracy of sequence–structure mapping. However, 
it turns out that the relationship between sequence similarity, 
statistical signifi cance of the alignment, and its accuracy is not simple. 
In distant homology cases, sequence similarity between the target 
and template by itself is a poor predictor of alignment accuracy, 
because most commonly, the target-template pairwise alignment is 
derived in the context of multiple aligned sequences (sequence 
profi les, HMMs, or explicitly derived MSAs). Therefore, the number 
and the similarity distribution of additional homologous sequences 
seem to play a major role in determining both the sensitivity of 
homology detection and the overall alignment accuracy. As in 
crossing a river by hopping from one stone to the next, intermedi-
ate homologs may serve as “bridging stones” helping to link the 
target and the template  (  53  ) . It is apparent that the more interme-
diate sequences are available and the smoother is their similarity 
transition, the more accurate alignment may be expected. A higher 
statistical signifi cance of an alignment usually means a higher align-
ment accuracy. However, in distant homology cases, it would be a 
big mistake to think that highly statistically signifi cant alignments 
are always highly accurate. This is illustrated in Fig.  3  with a dis-
tantly homologous pair of DNA sliding clamps. While BLAST is 
not able to detect this relationship at all, PSI-BLAST, HMMER, 
COMA, and HHpred, representing both profi le- and HMM-based 
methods, detect it with a very high confi dence. However, all of the 
corresponding alignments show signifi cant discrepancies with the 
“gold standard” alignment derived from structure comparison 
with DaliLite  (  54  ) . In other words, there is no strict dependency 
between alignment accuracy and homology detection ability. At the 
same time, this example seems to support observations (e.g., refs. 
 17,   55  )  that profi le–profi le alignments are in general more accurate 
than profi le–sequence alignments. Alignment accuracy may also 
depend on inherent properties of a protein family. In particular, it 
has been observed that families with a high diversity of confi dent 
homologs tend to produce lower quality profi le–profi le alignments 

  5.  Accuracy 
of the Sequence–
Structure Mapping

  5.1.  Non-trivial 
Relationship Between 
Sequence Similarity, 
Statistical 
Signifi cance, and 
Alignment Accuracy
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  Fig. 3.    Structure and sequence comparison of distantly homologous DNA sliding clamps from yeast (PDB code: 1plq) and 
 E. coli  (2pol). ( a ) Their 3D structures are similar despite sharing only 12% identical residues. ( b ) Comparison of DaliLite 
(DALI) structure-based alignment between 1plq and 2pol with the alignments produced by PSI-BLAST (PSI;  E  value = 3e–30), 
HHMER ( E  value = 2e–32), COMA ( E  value = 3e–13), and HHpred (probability = 99%). Alignments were obtained by searching 
PDB with 1plq sequence profi les (HMMs) that were obtained by running up to fi ve iterations of PSI-BLAST (jackhmmer in 
the case of HMMER) with the 1plq sequence as a query against the fi ltered “nr” database. For easier comparison, columns 
corresponding to gaps in 1plq sequence were removed from all the alignments. Alignment positions showing discrepancies 
between DaliLite and each of the methods are shaded. Only positions corresponding to secondary structure elements (“H,” 
helix, “E,” strand) in 1plq were considered. The best agreement with the DaliLite alignment is shown by COMA, followed by 
HMMER, HHsearch, and PSI-BLAST.       
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with their remote relatives  (  56  ) . However, this lower alignment 
accuracy cannot be improved when the most distant members of 
these families are excluded from their profi les. On the contrary, the 
presence of more diverse members has been found to result in 
more accurate alignments. This implies that the growth of the 
sequence databases should automatically result in more accurate 
alignments for the same level of sequence identities. However, 
this conclusion appears to hold only for confi dent high-quality 
homologous sequences. The inclusion of spurious contaminating 
sequences or even low-quality metagenomic sequences may nega-
tively impact the target-template alignment accuracy  (  57  ) .   

  Sequence–structure alignment by itself does not tell which regions 
are aligned reliably (provide the correct residue mapping) and which 
ones may require adjustment. Therefore, to improve an alignment, 
the fi rst task is to identify those alignment regions that can be 
trusted. Once the reliable regions are identifi ed, the remaining 
alignment stretches can be either subjected to refi nement or (if a 
signifi cant conformational change is anticipated) rebuilding using 
different templates or template fragments. 

 The earliest methods for identifi cation of reliable alignment 
regions  (  58–  60  )  were focusing on pairwise sequence alignments 
that are largely irrelevant for the present day comparative modeling 
approaches. For target-template alignments constructed in the 
context of sequence profi le- (or HMM)-based methods, several 
approaches were shown to be useful. Perhaps the simplest approach 
is based on the scores of individual positions within the profi le–
profi le alignment. It was shown that the regions containing high 
scoring positions correlate well with the correctness of their align-
ment  (  61  ) . More commonly, the positional reliability of sequence–
structure alignments is estimated by assessing the region-specifi c 
alignment stability. There are two general strategies to generate 
suffi cient alignment variability from which stable alignment regions 
can then be identifi ed. The fi rst strategy relies on a single method 
to generate alignment variability. This has been done either by using 
suboptimal alignments derived from the same sequence data 
 (  62,   63  )  or by diversifying alignments through the sampling of the 
available sequence space of homologs as in PSI-BLAST-ISS  (  64  ) . 
The second strategy is based on the use of multiple methods to 
generate corresponding alignments followed by the analysis of 
alignment regions that do or do not agree between these different 
methods  (  65  ) . Independently of which strategy is used, a strong 
consensus is considered to indicate reliably aligned regions. The 
lack of consensus may be caused by different reasons such as weak 
sequence conservation, insertions/deletions, or a signifi cant confor-
mational change. Figures  4  and  5  illustrate two typical situations 
resulting in unreliable alignment regions delineated with PSI-BLAST-
ISS  (  64  ) . In Fig.  4 , the region of unreliable alignment coincides with 
a signifi cant difference in orientation of corresponding  α -helices.   

  5.2.  Estimation of the 
Region-Specifi c 
Alignment Reliability



70 Č. Venclovas

 The unreliable region in Fig.  5  corresponds to a structurally 
conserved  α -helix, which, however, has an insertion at one end and 
a deletion at the other end. Aligning this region correctly for 
sequence-based methods is diffi cult because of their tendency to 
cancel out the insertion and the deletion adjacent to the  α -helix by 
shifting (incorrectly) its sequence. Yet, among individual alignment 
variants suggested by PSI-BLAST-ISS, there is one that corre-
sponds to the structurally accurate alignment.  

  Although it is useful to know which regions in the model may be 
misaligned, the desirable goal is to achieve the highest possible 
sequence–structure alignment accuracy. Since sequence features 
alone are of little help in resolving alignment ambiguities, the often 
used recipe is to apply the assessment of alternative alignments in 
the context of a corresponding 3D model. To do this, one needs 
some sort of diagnostic tool for evaluating model quality in a region-
specifi c way. Until recently, there were only few such tools available 
for performing the task. For quite some time, classical methods, 
ProSA  (  66  )  and Verify3D  (  67  ) , have been popular choices for both 
the overall (global) and the position-specifi c (local) protein struc-
ture quality assessment. An important stimulus for development of 
new methods has appeared a few years back with the introduction 

  5.3.  Improvement of 
Sequence–Structure 
Alignments

  Fig. 4.    Example of an unreliable alignment region corresponding to a structurally divergent motif. This motif is represented 
by an  α -helix shown in  light colors  (enclosed in an  ellipse ) in superimposed structures of the modeling target (PDB code: 
1xfk) and the template (1gq6). Below, the 1xfk is aligned with 1gq6 according to both structural correspondence (Dali) and 
a consensus alignment produced by PSI-BLAST-ISS (ISS_cons). “X” denotes positions lacking the consensus. The secondary 
structure of the 1xft is shown above the alignment. Figure adopted from ref.  64 .       
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of the model quality assessment category in CASP experiments  (  68  ) . 
Quite a few approaches for estimating both the global and the local 
quality of a protein model have been developed since. Clustering- 
or consensus-based methods currently are the most accurate and 
the best such methods show a respectable accuracy in predicting 
global model quality  (  69  ) . However, to work well, they require a 
large ensemble of models generated by different methods. 
Unfortunately, while this setting is natural for CASP, it has little to 
do with real modeling projects. In addition, even clustering-based 
methods perform signifi cantly worse in the local model quality 
assessment mode, which is critical for the alignment improvement 
task. Nevertheless, promising new methods such as QMEAN 
 (  70,   71  )  that are capable of assessing position-specifi c quality of 
individual models have also emerged. 

 CASP results revealed that the systematic identifi cation of cor-
rect alignment variants in unreliable regions is still diffi cult. Analysis 
of common alignment failures showed that the error-prone regions 
often share similar traits  (  72,   73  ) . These regions often correspond 

  Fig. 5.    Example of an unreliable alignment region corresponding to a structurally conserved motif surrounded with variable 
adjacent regions. The motif includes a structurally conserved  α -helix (shown in  light color  and marked by an  ellipse ) in 
superimposed structures of the modeling target (PDB code: 1vlo) and the template (1pj5). However, one of the adjacent 
loops has an insertion and the other one has a deletion. The alignment shows structural correspondence (Dali), the PSI-
BLAST-ISS consensus alignment (cons), and two individual variants (var1 and var2). “X” denotes positions lacking the 
consensus. One of the variants (var1) reproduces most of the structure-based mapping for the conserved  α -helix (sequence 
underlined). Figure adopted from ref.  64.        
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to peripheral secondary structure elements ( β -strands at the edge 
of  β -sheets, highly solvent-exposed  α -helices) that are under lesser 
structural/energy constraints than the structural core. Another 
feature that frequently correlates with alignment errors is the 
appearance or disappearance of small structural “defects” such as 
 β -bulges. Arguably, alternative alignment variants in such error-
prone regions have subtle energy differences and therefore are 
diffi cult to rank correctly. In addition, template structure is just an 
approximation of the native structure of modeling target. Inevitably, 
this introduces additional error during the evaluation of alternative 
alignments, and because of that even an effective assessment 
technique might fail. It is intuitively apparent that the more accu-
rately is the protein main chain modeled, the easier it should be to 
distinguish the correct residue mapping from the erroneous one. 
In other words, perhaps the most effective, although computation-
ally expensive, way to identify the native alignment would be to 
test an ensemble of alignments by performing simultaneous refi ne-
ment for each of the corresponding models. In fact, the sampling 
of alignment variants coupled with all-atom refi nement has been 
tested at CASP, with impressive results for some modeling targets 
 (  74  ) . Less successful results were attributed to insuffi cient sampling 
and imperfect energy estimation  (  74  ) . 

 Thus, the accurate mapping of sequence onto structure remains 
one of the important bottlenecks in homology modeling. Although 
there are signs of improvement, a lot more will have to be done in 
developing more effective approaches for sampling alignments and 
conformations, together with better methods for the local model 
quality estimation.   

 

 The following is a brief description of practical steps for aligning a 
sequence to known structure(s), estimating the reliability of align-
ment regions and selecting the best alignment. To a large degree, 
this rough guide is based on an updated protocol  (  73  )  used to 
achieve the top-ranked results in the homology (template-based) 
modeling category during the CASP8 experiment  (  75  ) . The fl ow-
chart depicting main steps in sequence–structure alignment is 
presented in Fig.  6 .  

  First, it is useful to fi nd out what is the level of diffi culty for gener-
ating accurate sequence–structure alignment. The initial estimate 
can be made, once it is known if there are closely related experimental 
3D structures available. If so, how similar their sequences are to 
the protein of interest? How many structures are available? How 
many additional homologs can be detected in sequence databases 
and how closely they are related to the target? 

  6.  Practical Guide 
for Sequence–
Structure 
Alignment

  6.1.  Searching for 
Structural Templates 
and Constructing 
Initial Alignments
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 The best idea is to start with a simple sequence search using 
BLAST  (  3  ) . It is useful to have the BLAST suite of programs 
including both BLAST and PSI-BLAST as well as protein sequence 
databases installed locally. This provides an increased fl exibility in 
using these programs. The BLAST program suite and sequence 
databases can be obtained from the NCBI FTP site at   ftp://ftp.
ncbi.nlm.nih.gov/blast/    . Sequence databases at NCBI are updated 
daily and can be retrieved automatically using the  update_blastdb.pl  
script, which is provided freely as part of the BLAST documenta-
tion at NCBI. For the local installation, it is important to have at 
least two protein sequence databases: nonredundant sequence 
database (nr) containing all nonredundant protein sequences 
(except those from metagenomic projects) and the PDB sequence 
database (pdbaa), which contains protein sequences of known 3D 
structures. The latter sequences are also available for downloading 
directly from PDB (  http://www.pdb.org    ). Since the nonredundant 
(nr) sequence database is huge and continues to grow fast, it is 
advisable to have several smaller versions of this database with very 
similar sequences removed. It is a common practice to remove 
sequences up to 90, 80, and 70% identical to each other. This helps 
to reduce the database size signifi cantly without negatively affecting 
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  Fig. 6.    Flowchart of major steps in sequence to structure alignment.       
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homology search results. The fi ltering of sequence databases can 
be done with clustering tools such as CD-HIT  (  76  ) . If the fi ltering 
of the locally installed “nr” database turns out to be too computa-
tionally expensive, the user may choose to download preprocessed 
UniRef sequence databases with the reduced levels of redundancy 
from UniProt (  http://www.uniprot.org/    ). These sequence databases 
are also aiming at a complete coverage of sequence space. At present, 
UniRef100, UniRef90, and UniRef50 fi ltered correspondingly 
at 100, 90, and 50% sequence identity, are available. Alternatively, 
the user can run both BLAST and PSI-BLAST sequence searches 
using web servers either at NCBI (  http://blast.ncbi.nlm.nih.gov/    ), 
EBI (  http://www.ebi.ac.uk/Tools/sss/    ), or at many other locations 
on the Internet. 

 The results of BLAST search against PDB sequences give an 
approximate estimate of the diffi culty to derive an accurate sequence–
structure alignment. During the simplest scenario, BLAST search 
detects a PDB sequence with a statistically signifi cant expectation 
value ( E  value < 0.001) and a relatively high sequence similarity 
(over 40% sequence identity) to the modeling target. In such case, 
the homologous relationship is obvious and the alignment may be 
structurally optimal. However, even if such pairwise alignment does 
not have any gaps, it is still recommended to substantiate the align-
ment with methods that rely on information derived from multiple 
sequences. This can be done by collecting additional close sequence 
homologs with BLAST, pooling them together with target and 
template sequences and aligning with one of the fast MSA methods 
such as MAFFT  (  28  )  or MUSCLE  (  29  ) . If sequence identity is lower 
than 40% and there are gaps, the alignment almost certainly will 
need some adjustments such as the placement of the gaps or their 
boundaries. In such case, an MSA might also help to refi ne the target-
template alignment. However, if the sequence similarity enters 
the “twilight” zone, MSA methods that use additional information 
(predicted secondary structure, 3D structural information) such as 
PROMALS/PROMALS3D  (  36,   37  )  and 3DCoffee/Expresso 
 (  38,   39  )  might be more appropriate. The use of PSI-BLAST and 
other profi le (HMM)-based methods is also recommended in more 
distant homology cases (see below). 

 If no PDB sequences with statistically signifi cant  E  values are 
detected with BLAST, more sensitive methods such as PSI-BLAST 
should be used next. The power of PSI-BLAST is in rich sequence 
profi les generated from aligned multiple homologous sequences. 
The PDB sequence database is too small to perform the iterative 
PSI-BLAST searches against it directly. Usually, potential struc-
tural templates are detected and aligned with the target sequence 
using the so-called PDB-BLAST procedure. It involves performing 
several iterations of PSI-BLAST search against a large sequence 
database (e.g., “nr” or its derivatives) and then using the constructed 
profi le to run the last iteration against the PDB sequence database. 

http://www.uniprot.org/
http://blast.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/Tools/sss/
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It is worthwhile to make several PDB-BLAST runs, every time 
generating a more inclusive profi le by increasing the number of 
iterations against the “nr” database or its derivatives. The change 
in the number of detected PDB sequences and the corresponding 
 E  values will give an approximate estimate of evolutionary distance 
between the target sequence and the confi dently ( E  value < 0.001) 
detected structures. If PSI-BLAST and sequence databases are not 
installed locally, it is still possible to perform PDB-BLAST-like 
searches using the NCBI BLAST server through several manual 
steps. Automatic PDB-BLAST searches can be performed both 
locally and remotely (at NCBI) using Re-searcher  (  77  ) . Note that 
PSI-BLAST is not the only available option. Recently, an iterative 
procedure similar to that in PSI-BLAST was implemented in HMMER 
(  http://hmmer.org/    ). With the reported high speed and sensitivity, 
the iterative HMMER3 procedure (jackhmmer) is at least as good 
as PSI-BLAST. 

 If sequence searches with profi les (PSI-BLAST) or HMMs (e.g., 
HMMER) do not reveal any obvious structural homologs, it does 
not necessarily mean that they are absent from the PDB. It may be 
that the evolutionary relationship is too distant to be detected by 
profi le (HMM)–sequence comparisons. In such case the obvious 
next step is to turn to the even more sensitive profi le–profi le, 
HMM–HMM, or hybrid sequence–structure methods. There are 
now a large number of such methods available and only a small 
fraction is listed in Tables  2  and  3 . One of the best choices to start 
with is HHsearch  (  16  ) , a very fast and one of the most sensitive 
homology detection methods. Based on HMM–HMM comparison, 
HHsearch is available both as a standalone toolkit and as part of 
the HHpred web server  (  78  ) . Other sensitive alternatives to HHsearch 
include PRC  (  19,   79  ) , COMA  (  17,   80  ) , COMPASS  (  15,   81  ) , 
and PROCAIN  (  22,   82  ) . Both HHpred and COMA servers also 
have a useful option to produce 3D models based on the reported 
sequence–structure alignments. Among the fully integrated 
modeling approaches I-TASSER  (  41  )  at present is clearly the best 
choice. As many other integrated hybrid modeling methods it will 
return the fi nal 3D model, which may not necessarily correspond 
to any of the initial sequence–structure alignments used. Meta-servers 
such as Genesilico  (  48  )  or Pcons.net  (  49  )  may also be useful, since 
they provide results from several methods simultaneously. In general, 
many new methods are continuously reported, making it diffi cult 
to select the best methods at a given time. It may be instructive to 
check the server results during latest CASP experiments (  http://www.
predictioncenter.org/    ). However, not always well-performing 
methods at CASP are available as public servers and not all well-
performing methods take part in CASP. Independently of which 
servers you use, check when the databases were last updated; even 
the best methods will likely perform poorly on old sequence and 
structure databases. 

http://hmmer.org/
http://www.predictioncenter.org/
http://www.predictioncenter.org/
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 Initial template search results usually reveal the domain 
composition of the modeling target. If it is a multidomain protein, 
it may be benefi cial or even necessary to partition the sequence 
into chunks corresponding to individual domains. First, individual 
protein domains may have a closer relationship with different struc-
tural templates. In such case, treating domains individually 
may improve the selection of templates and/or the accuracy of 
sequence–structure alignments. Second, the partition of the sequence 
into domains may help to avoid homologous over-extension (HOE), 
an important source of errors in iterative profi le-based searches 
 (  83  ) . This error occurs when the alignment initially covering only 
homologous domains over the course of iterations is extended into 
nonhomologous regions.  

  Typically, sequence–structure alignments produced within the 
“twilight” or “midnight” zones of sequence similarity will have 
inaccuracies. However, a visual inspection at this level of sequence 
similarity is virtually useless in spotting them. How then to distin-
guish alignment regions that are reliable from those that may be 
incorrect and will likely require refi nement? One of the options is 
to use alignment stability as an indicator of reliability. One of the 
available tools that use this idea is PSI-BLAST-ISS  (  64  ) . It is based 
on multiple PSI-BLAST searches with different yet related queries. 
PSI-BLAST-ISS results simultaneously provide several types of 
information: (1) automatically detected structural templates and 
corresponding alignments, (2) data suggesting which one of the 
templates may be the closest to the target, and (3) the region-
specifi c alignment reliability indication for each of the templates. 
The drawback of PSI-BLAST-ISS is that it takes time to run all the 
PSI-BLAST searches (typically 50–100) and that parameter settings 
may need adjustment depending on the target. PSI-BLAST-ISS is 
also useless in cases of very distant homology, when PSI-BLAST 
is not sensitive enough to detect templates. In such cases, perhaps 
the simplest way to estimate regional alignment reliability is to 
use the agreement between the sequence–structure alignments pro-
duced by different methods. However, different methods may 
provide alignments or build models using different templates. To 
cope with this potential heterogeneity of results, it is useful to 
convert all the outputs into a common format such as 3D struc-
ture. Nowadays, many methods generate 3D models as the fi nal 
output or at least provide an option to construct models using the 
resulting alignments. However, if models are unavailable, they can 
be easily constructed from sequence–structure alignments using 
one of the modeling tools such as MODELLER  (  84  ) , Nest  (  85  ) , and 
Swiss-PdbViewer  (  86  ) . There are also web servers for converting 
sequence–structure alignments to structural models. For example, 
“alignment mode” of SwissModel  (  86  ) , one of the popular modeling 
servers, can be used for this purpose. Comparison of the resulting 
models with one of the representative templates provides the 

  6.2.  Estimation of 
Position-Dependent 
Alignment Reliability
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underlying sequence–structure mappings. After that, all the pairwise 
alignments can be merged into a single PSI-BLAST-ISS-like align-
ment, in which a template is aligned to the target sequence variants 
corresponding to different models. Both pairwise structure com-
parisons and merging of the corresponding alignments can be easily 
performed in one step using the  dali_sp.pl  wrapper (  http://www.
ibt.lt/bioinformatics/software/    ) for DaliLite  (  54  ) . Just like in the 
case of PSI-BLAST-ISS, the agreement between different methods 
tends to indicate reliable regions of the alignment, while the lack of 
consistency points to the need of further analysis.  

  If the sequence of the modeling target is aligned reliably with all 
the structurally conserved regions of the template(s) the sequence–
structure mapping is done. In such case, the fi nal quality of the 
homology model will be determined by other steps such as the 
ability to accurately model variable regions and to drive the model 
structure closer to the native one. The tricky part begins with the 
regions that are not reliably aligned, because fi rst it is important to 
understand whether the uncertainty is caused by the conformational 
change or simply by the lack of sequence conservation. Only if 
there are hints from available template(s) that the region is struc-
turally conserved, there is a good chance to identify structurally/
evolutionary meaningful alignment for this region without modify-
ing the template backbone. In that case, the assessment of sequence–
structure mapping within the context of 3D structure (i.e., assessing 
a structural model based on a particular sequence–structure 
alignment) perhaps is the most promising. Structure quality evalu-
ation methods such as ProSA  (  66,   87  )  or QMEAN  (  70,   71  )  can 
help identify the correct alignment by estimating both the overall 
and region-specifi c model quality. Often, the problem with the 
evaluation of models based on alternative alignment variants is 
the noisiness of the results. More often than not, the evaluation 
results do not show a clear preference towards a particular align-
ment variant. One way to deal with the noisy signal is to include 
additional homologs of the target sequence into the analysis. The 
homologs should be selected such that their alignment with the 
target sequence would be unambiguous. The consensus of evalua-
tion results of models based on alternative sequence–structure 
alignments for multiple family members may help rank the alignment 
variants more effectively. However, the consistent improvement of 
the sequence–structure mapping based on model evaluation is 
still an unresolved problem.  

  If none of the most sensitive profi le (HMM)-based methods can 
reliably detect any structural template it may mean that indeed 
there is no related template in the PDB. Alternatively, the relation-
ship might be too distant, beyond the sensitivity limits of current 
methods. In both cases, there are at least two ways to approach the 
problem. 

  6.3.  Improving 
Alignments

  6.4.  What Can Be Done 
If No Template Is 
Detected Reliably?

http://www.ibt.lt/bioinformatics/software/
http://www.ibt.lt/bioinformatics/software/
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 If obtaining the 3D model is not the most urgent task, the fi rst 
option is to use alerting systems such as Re-searcher  (  77  )  or 
PDBalert  (  88  )  for performing automatic recurrent searches of 
homologous structures in PDB. Re-searcher uses PSI-BLAST as 
the search engine, and PDBalert is based on even more sensitive 
method, HHsearch. Usually the confi dent detection of a modeling 
template is the result of new homologous structure being depos-
ited into PDB. However, in some cases, merely an increase of the 
number of sequence homologs may be suffi cient to reliably detect 
templates that have already been present in PDB. This may happen 
because additional sequences help to build more representative 
sequence profi les (or HMMs). The serious drawback of this option 
is the unpredictability of the time frame when the suitable template 
will be detected. It may happen within days, but it may also happen 
years later, when the structure of a homolog is solved and deposited 
into PDB. 

 The second option is to use free modeling (FM) methods that 
do not have to rely on explicit templates and sequence–structure 
alignments to construct 3D models. Currently, there are a number 
of methods that would automatically shift to the free modeling 
mode if no suitable templates could be detected. Some of the most 
effective such methods include Robetta  (  43  ) , an automatic server 
based on Rosetta, a highly successful fragment-based approach 
 (  89  ) , I-TASSER  (  41,   90  )  and its relative Pro-sp3-TASSER  (  42,   91  ) , 
SAM-T08  (  13  ) , MULTICOM  (  45  ) . As it has been observed in CASP 
trials, these approaches can produce models of reasonable quality 
for small proteins (up to ~100 residues) having simple topology. 
However, at present, it would be too optimistic to expect consis-
tently good models from FM approaches. Therefore, the confi dent 
detection of even remotely homologous structural template may 
help to improve modeling results considerably.   

 

 A steady growth of experimentally determined protein structures 
coupled with a dramatic increase of sequence data has made 
homology modeling both widely applicable and practically useful. 
In recent years, there have also been signifi cant advances in distant 
homology detection and sequence alignment. The largest progress 
has been made mainly due to the application of sequence profi les 
and HMMs. At the same time, there are a number of remaining 
issues. In particular, there is a great need for improvement of 
the sequence–structure alignment accuracy, which is a key factor 
determining the quality of a homology model. This issue is tightly 
linked with the ability to accurately estimate local errors in protein 
models. As indicated by CASP blind trials this is a notoriously 

  7.  Conclusions



793 Methods for Sequence–Structure Alignment

diffi cult problem. However, with the recent emphasis within the 
modeler community on the accurate model quality estimates there 
is hope for signifi cant breakthroughs in this area. On the other 
hand, even currently available tools provide users with a lot of 
possibilities to construct, assess, and improve sequence–structure 
alignments for homology modeling.      
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