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The Voronoi diagram of balls, corresponding to atoms of van

der Waals radii, is particularly well-suited for the analysis of

three-dimensional structures of biological macromolecules.

However, due to the shortage of practical algorithms and the

corresponding software, simpler approaches are often used

instead. Here, we present a simple and robust algorithm for

computing the vertices of the Voronoi diagram of balls. The

vertices of Voronoi cells correspond to the centers of the

empty tangent spheres defined by quadruples of balls. The

algorithm is implemented as an open-source software tool,

Voronota. Large-scale tests show that Voronota is a fast and

reliable tool for processing both experimentally determined

and computationally modeled macromolecular structures. Vor-

onota can be easily deployed and may be used for the devel-

opment of various other structure analysis tools that utilize

the Voronoi diagram of balls. Voronota is available at: http://

www.ibt.lt/bioinformatics/voronota. VC 2014 Wiley Periodicals,

Inc.

DOI: 10.1002/jcc.23538

Introduction

Biological macromolecules such as proteins and RNA typically

function as complex three-dimensional (3D) shapes. These

shapes are determined by the combined effect of interatomic

interactions both within the macromolecule itself and with the

environment (e.g., water or lipid bilayer). For comprehensive

understanding of these interactions, it is essential to unambig-

uously identify all the neighbors of a given atom, to determine

whether it is in contact with any of the neighboring atoms or

with the environment, and how extensive these contacts are.

The atomic neighborhood analysis can also be used for study-

ing various geometric features of 3D structure including voids,

pockets, and channels, for deriving molecular and solvent

accessible surfaces and other geometric parameters. For these

types of analyses, the Voronoi tessellation seems to be among

the most suitable approaches.[1]

Voronoi diagram is named after Georgy Voronoi, who

defined it back in 1908.[2] Given a set of points (centroids) in

space, Voronoi diagram partitions the space into so-called Vor-

onoi cells. The Voronoi cell may be considered as the volume

“owned” by the centroid, because every point within the cell

is closer to the centroid of the cell than to any other centroid.

The Voronoi cell can be constructed as follows. Every line con-

necting a given centroid with other centroids is bisected by

the plane perpendicular to that line. The smallest polyhedron

formed around the centroid by such planes is termed the Vor-

onoi cell (also known as the Voronoi region). Collectively, Voro-

noi cells corresponding to the set of points define the Voronoi

tessellation, partitioning the space without any voids or over-

laps. An important property of the Voronoi diagram is that

every Voronoi cell has unambiguously defined neighbors with-

out using any distance cutoffs.

However, the representation of protein or nucleic acids

atoms as discrete points in many cases is an unacceptable

oversimplification as it fails to reflect that different atoms have

measurable volumes of different sizes. A more physically rele-

vant representation of atoms is balls/spheres of van der Waals

(VDW) radii and of molecules as unions of such balls. In such

case, the Voronoi procedure for points (or balls of the same

radii) has to be modified. Richards, who was the first to apply

the Voronoi method to protein structures,[3] accounted for

atomic diversity by introducing VDW radius-dependent

weights for positioning the separating planes. Although this

method became widely used, it has a serious drawback.

Namely, the separating planes no longer intersect at common

points resulting in some unallocated volume between the

cells. One of the proposed solutions to this problem was to

use radical plane as a separating plane between atomic balls.[4]

This solution represents another weighted Voronoi scheme

producing so-called Laguerre or power diagram. The advant-

age of the Laguerre diagram is that the cells all have flat faces

making computations simpler. In addition, there is no unallo-

cated volume in the resulting tessellation. The downside is

that the weights assigned to two atoms are not directly pro-

portional to the distance from each atom to the separating

plane. This makes physical interpretation of the Laguerre tes-

sellation problematic. Goede et al.[5] proposed a weighted Vor-

onoi procedure resulting in a straightforward physical

interpretation. In this procedure, the weights assigned to
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atoms are linearly related to their respective distance to the

dividing surface. The dividing surface is no longer a plane but a

quadric surface (hyperboloid) producing Voronoi cells with faces

that in general are not flat. This type of diagram is known as

the Voronoi diagram of balls/spheres,[6] the additively weighted

Voronoi diagram,[7] or the Apollonius diagram.[8]

Although the Voronoi diagram of balls is particularly well-

suited for the analysis of 3D structures of biological macromo-

lecules, so far this approach has not been utilized as widely as

it might be expected. The main reason of its limited use

appears to be the shortage of efficient algorithms and the

associated software tools. Therefore, in most applications, in

which the Voronoi diagram of balls would be the most appro-

priate approach, simpler methods such as the ordinary Voronoi

diagram of points or the Laguerre (power) diagram are

adopted instead.

To our knowledge, there are only few algorithms available

for computing Voronoi diagram of balls with the focus on

structures of biological macromolecules. One of the practical

algorithms applied to protein structures was proposed by Kim

et al.[6] The algorithm sequentially discovers the vertices of the

Voronoi cells by tracing the edges of the cells. This algorithm

was later improved by applying geometric filters for spatial

search.[9,10] Medvedev et al.[11] published a similar algorithm,

but it was reported[12] that the software implementing their

algorithm is not suitable for typical proteins. Kim et al.[13,14]

introduced an algorithm for constructing the quasitriangula-

tion, which is a data structure dual to the Voronoi diagram of

balls. Thus, the quasitriangulation is analogous to the Delau-

nay triangulation,[15] the dual of the Voronoi diagram of

points. Previously, we used the Voronoi diagram of balls in

Voroprot, an interactive tool for the analysis of complex geo-

metric features of protein structure.[16] However, Voroprot was

developed mainly as a visual analysis tool, not intended for

batch processing or analysis of extremely large biomolecular

structures.

In this article, we present a simple yet efficient algorithm

and the corresponding open-source software for computing

the vertices of the Voronoi diagram of 3D balls, a critical step

in constructing the Voronoi diagram of 3D balls or its dual

data structure, the quasitriangulation. The algorithm can be

applied to 3D structures of various biological macromolecules

including proteins, nucleic acids, protein–protein, and protein–

nucleic acids complexes. The computed Voronoi vertices can

be used in unequivocally defining atomic neighborhoods,

describing internal cavities in molecular structures or con-

structing edges and faces of Voronoi cells of atoms. We have

recently applied this approach for the large-scale computation

of residue–residue contact areas in both experimental protein

structures and theoretical protein models of different qual-

ity.[17] Here, we provide a detailed description of the algorithm.

We then describe the software implementation and provide

large-scale tests illustrating its speed and robustness. In addi-

tion, we compare the performance of our software with the

performance of QTFier[18] and awVoronoi[19] that, to the best

of our knowledge, are the only other publicly available tools

that include similar functionality.

Methods

The Voronoi diagram of 3D balls and the corresponding

Voronoi vertices

Let B5 b1; b2; . . . ; bnf g be a set of balls, where bi5hci; rii is a

ball with a center ci 2 R3 and a radius ri 2 R1
0 . A signed dis-

tance dðp; biÞ from a point p 2 R3 to a ball bi is defined as

follows:

dðp; biÞ5||p2ci ||2ri (1)

The Voronoi cell Vi for a ball bi is a region containing all

points closest to bi:

Vi5 p 2 R3jdðp; biÞ � dðp; bjÞ;8bj 2 Bnbi

� �
(2)

A set fV1; V2; . . . ; Vng is the Voronoi diagram for B. Figure 1

contains examples of the Voronoi cells of balls. Two balls are

considered to be neighbors if their Voronoi cells intersect. The

intersection of four Voronoi cells defines a point termed the

Voronoi vertex. It is the center of an empty sphere tangent to

the four neighboring balls (Fig. 2a). Notably, some Voronoi

cells of balls may have no vertices—such situations are ana-

lyzed separately.

Figure 1. (a) Voronoi cells of two-dimensional (2D) balls (blue) and the empty tangent spheres (red) corresponding to the Voronoi vertices. (b) Edges of

the Voronoi cells of 3D balls (left) and the empty tangent spheres corresponding to the Voronoi vertices (right).
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Outline of the algorithm for finding the Voronoi vertices

Given an input set of balls B, our goal is to find the quadruples

of balls that define all the vertices of the Voronoi diagram for B.

In other words, we search for quadruples of balls that have at

least one tangent sphere, which does not intersect with any

ball from the input set. We term such quadruples valid. Each

valid quadruple is a union of four valid triples. Starting with a

single valid triple, we can discover valid quadruples by finding

valid neighbors for previously detected valid triples. This princi-

ple, commonly known as “gift wrapping”,[20] is used in algo-

rithms for both the construction of the Delaunay triangulation

of points[21,22] and for the construction of the quasitriangulation

of balls.[6,11] We exploit the same principle, but use a different

take on searching for valid triples and their neighbors.

In Procedure 1, we implement the “gift wrapping” strategy

with an important modification: we take into account that a

network of valid quadruples may be disconnected.[23] This is

achieved by having two “while” cycles. The inner cycle (start-

ing at line 8) finds as many quadruples as possible starting

from a valid triple. The outer cycle (starting at line 6) runs

while there still are valid triples containing balls that are not

part of any of the already found quadruples.

In the next sections, we explain the algorithm in detail. To

begin, we briefly describe the technique we use for computing

tangent spheres. We then define the two complex subprocedures

incorporated into Procedure 1: finding the first valid triple (lines 5

and 22) and finding all neighbors for a valid triple (line 11). Both

subprocedures utilize the same technique for efficient searching

in a large set of balls, which is also described later in the text.

Procedure 1 Find valid quadruples

input: B 5 (a set of balls)
output: Q 5 (a set of valid quadruples for B)

1: Q  (an empty set for found quadruples)

2: T  (an empty set for processed triples)

3: M  (an empty map to associate triples with sets of their

neighbors)

4: stack  (an empty stack for triples)

5: tf  (for B, find a first valid triple)

6: while tf 6¼ 1 do

7: push (stack, tf )

8: while stack is not empty do

9: t  pop(stack)

10: T  T [ t

11: X  (for B, find a set of all neighbors of t, excluding M[t])

12: for all x � X do

13: q  (a quadruple from t and x)

14: Q  Q [ q

15: Tq  (a set of all triples from q)

16: for all tq � Tq do

17: xq  (a neighbor of tq in q)

18: M½tq�  M½tq� [ xq

19: if tq 62 T then

20: push(stack, tq)

21: U  (detect balls not included in any q � Q)

22: tf  (for B, find a first valid triple containing any u � U)

23: return Q

Computing tangent spheres

To compute a tangent sphere for four balls {b1, b2, b3, b4}

(examples shown in Fig. 2a), we use the method proposed by

Gavrilova and Rokne.[24] Let us assume without the loss of

generality that b4 has the smallest radius. We reduce the radii

of all the four balls by the radius of b4. We then move the

balls such that b4 coincides with the origin. This allows us to

define an easily solvable system of equations for finding the

coordinates and the radius of the tangent sphere. This system

can have none, one, or two solutions. After solving the system,

we restore the original positions and radii of {b1, b2, b3, b4}

Figure 2. (a) Quadruples of 3D balls having either one (left) or two (right) tangent spheres. (b) A triple of 3D balls having two tangent planes. Diagrams below

each 3D example show corresponding similar cases in 2D space. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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and transform each computed tangent sphere accordingly.

Note that if the centers of tangent spheres are located inside

the intersection of all four balls, tangent spheres will have

negative radii.

There also may be tangent spheres of infinite radius. Their

surfaces can be regarded as planes. To compute tangent

planes for three 3D balls (an example shown in Fig. 2b), we

use an approach similar to the one used when computing tan-

gent spheres for four balls.

Finding the first valid triple

We make an assumption that balls close to each other are

likely to form valid quadruples. Thus, we take the first ball b0

� B and select a set of its nearest neighbors B0 � B. We then

start enumerating quadruples for B0. If a quadruple has a tan-

gent sphere that does not intersect any ball from B, then a

quadruple is valid and one of its triples is returned. If no valid

quadruples are found, B0 is expanded and more quadruples

are enumerated and tested.

In line 22 of Procedure 1, we need to find a first valid triple

that should contain a ball that was previously not included in

any of the already found valid quadruples. It may not always

be possible, therefore, for such constrained search we limit the

maximum size of B0 to avoid enumeration of all quadruples

for B.

Finding all neighbors for a valid triple

Constricted and loose triples. Consider a valid triple of balls

t5fa; b; cg � B. Generally, t can have infinitely many possible

tangent spheres, and a ball d can have a tangent sphere with

t if and only if d intersects or touches the volume defined by

the union of all the possible tangent spheres of t. If t has infin-

itely large tangent spheres, then these spheres can be

regarded as tangent planes. If t has exactly two tangent

planes, we call it a constricted triple. Otherwise, we call it a

loose triple. We define separate algorithms of finding neigh-

bors for constricted and loose triples.

Search space for a constricted triple. A constricted triple t has

two tangent planes, therefore, the union of all the possible

tangent spheres of t is a union of the following three regions:

� the halfspace h1 defined by the first tangent plane;

� the halfspace h2 defined by the second tangent plane, h1

and h2 may intersect;

� the region m located between the two tangent planes.

Figures 3a and 3b provides an illustration of such a subdivi-

sion. The centers of all the possible tangent spheres of t

belong to a continuous curve.[6] Let us denote this curve as C.

C intersects the plane defined by the centers of the three balls

in t at a single point p, which corresponds to the center of the

smallest possible tangent sphere of t. When moving away

from p along the curve C, the radius of the corresponding tan-

gent sphere always grows.

Finding neighbors in the halfspaces defined by a constricted

triple. Let us assume that for a constricted triple t, there is a

ball di such that di intersects halfspace hx � {h1, h2}. If t and di

have a single tangent sphere si, let us call si a hx-related tan-

gent sphere for t and di (if t and di have two tangent spheres,

then one of them closer to hx is called hx-related). Another

tangent sphere sj of t can be produced by moving the center

of si along the curve C (with the radius of sj changing so that

sj remains tangent to t). If the movement is directed toward

hx, then sj intersects di, therefore, sj is not empty. Otherwise

the movement is directed away from hx and sj does not even

touch di. In this case, if si is empty, then sj does not touch any

ball in hx. Therefore, if si is empty, then it is the only empty hx-

related tangent sphere for t.

The properties of hx-related tangent spheres allow us to

define Procedure 2 for finding a valid neighbor of t in half-

space hx. Along with the pseudocode, we provide a simplified

description of the procedure:

1. The procedure starts with any ball that intersects hx and

produces a hx-related tangent sphere with t;

Figure 3. (a) Regions defined by two tangent planes in 3D. (b) Regions defined by two tangent planes in 2D. (c) Illustration of Procedure 2 for halfspace

h2: starting with b1 the procedure runs until encountering b4, which produces an empty h2-related tangent sphere.
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2. The procedure selects any ball that intersects both hx

and the previously produced tangent sphere and pro-

duces another hx-related tangent sphere;

3. If step 2 has produced a tangent sphere, then step 2 is

repeated;

4. If the last produced tangent sphere is empty, then the

last selected ball is a valid neighbor.

Procedure 2 is greedy, it does not check all the balls that

intersect hx. See Figure 3c for an illustration of the procedure

run. Procedure 2 does not need to be called if a valid neigh-

bor of t from hx is already known from the previously found

valid quadruple that contains t. Therefore, for most valid triples

the procedure is performed only once. Also, the running time

of the procedure can be reduced if in line 2 a ball is selected

from a close neighborhood of t.

Procedure 2 Find a valid neighbor of a triple in a
halfspace

input: B 5 (a set of balls), t 5 (a triple of balls, t � B),

hx 5 (a halfspace, hx � {h1, h2})
output: d 5 (a valid neighbor of t) and s 5 (an empty hx-
related tangent sphere of t and d)

1: hd; si  h1;1i
2: d0  (select a ball d0 � B such that there exists a hx-related

tangent sphere s0 for t and d0)

3: while d0 6¼1 do

4: intersection  false

5: replacement  false

6: repeat

7: d1  (select another ball d1 � B such that d1 intersects s0)

8: if d1 6¼1 then

9: intersection  true

10: if there exists a hx-related tangent sphere s1 for t and

d1 then

11: replacement  true

12: until replacement 5 true or d1 51
13: if replacement 5 true then

14: hd0; s0i  hd1; s1i
15: else if intersection 5 true then

16: hd0; s0i  h1;1i
17: else

18: hd; si  hd0; s0i
19: hd0; s0i  h1;1i
20: return hd; si

Finding neighbors in the middle region defined

by a constricted triple

After valid neighbors of t from both h1 and h2 are deter-

mined, there may be remaining valid neighbors that do not

intersect h1 or h2 but intersect middle region m and have

empty tangent spheres with t. For a fast intersection check-

ing, we need a simple approximation of m. Let us consider

the surface of m. It is known to be a part of the Dupin

cyclide defined by balls in t (Fig. 4a).[6,25] A Dupin cyclide is

an envelope surface of spheres tangent (both externally and

internally) to the three fixed spheres. The surface of m is part

of the Dupin cyclide that corresponds only to externally tan-

gent spheres, that is, tangent spheres that do not overlap

the three fixed spheres. Each externally tangent sphere of t

has three points touching balls in t. The circumcircles of such

triples of touching points lie on the surface of m (Fig. 4b).[26]

There are two circumcircles that also lie on the touching

planes of t because they correspond to the largest possible

tangent spheres. We use a bounding cylinder of these two

circumcircles as an initial approximation of m (Fig. 4c). We

can reduce the size of this bounding cylinder by considering

circumcircles that correspond not to the largest possible tan-

gent spheres of t, but to the largest empty tangent spheres

of t, that is, empty h1-related and h2-related tangent spheres,

if such exist. If a ball intersects the defined bounding cylinder

and is located between the two tangent planes of t, then this

ball is checked for having at least one empty tangent sphere

with t.

Notably, circumcircles defined by tangent spheres of nega-

tive radii (see Fig. 4b3 for an example) may lie outside of the

cylinder approximating region m. However, this does not pres-

ent a problem, because if a valid neighbor of t corresponds to

a tangent sphere of negative radius, then this neighbor over-

laps the center of that tangent sphere and, therefore, inter-

sects the cylinder approximating m.

Figure 4. (a) For constricted triples of balls, it is possible to define Dupin

cyclides of three types: ring-like (1), horn-like (2), and spindle-like (3). Horn-

like cyclides are generally two-part, but we only show the part relative to the

middle region m. (b) 3D surfaces of middle regions are parts of Dupin

cyclides displayed above. Black circles indicate circumcircles of the points, at

which externally tangent spheres touch the balls of a triple. The circles lie on

the surface of a middle region. The topmost and bottommost circles also lie

on touching planes and are used for approximating a middle region. In the

last case (3), the middle part of the surface corresponds to tangent spheres

that have negative radii because they lie inside the intersection of all the

balls of a triple. (c) Bounding cylinders of the topmost and bottommost

circles shown in (b). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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Finding all neighbors for a loose triple. Let us now consider a

case, in which a valid triple t does not have exactly two tan-

gent planes. In this case, the search for valid neighbors is

performed in a brute-force manner: each ball b � B\t is

checked for having at least one empty tangent sphere with t.

It should be possible to define a faster but a more complex

procedure for handling loose triples. However, this would not

significantly improve the overall performance of the algo-

rithm, because our tests (described later in the text) show

that in macromolecular structures loose triples occur very

rarely.

Efficient searching in a large set of balls

Let us summarize geometric search operations that we

need to implement: search for balls that intersect a half-

space; search for balls that intersect a sphere; search for

balls that intersect a cylinder. To implement them effi-

ciently, we need a search data structure. We chose to use a

bounding spheres hierarchy (BSH)[27] because it does not

add any additional complexity when implementing geomet-

ric queries that we need: checking any bounding sphere for

an intersection with some object is no different from check-

ing an input ball for the same thing. Our approach to the

construction of BSH for a set of input balls B can be sum-

marized as follows:

1. The elements of B form the leaf nodes of the tree;

2. Nodes created in the previous step are grouped and

enclosed within bounding spheres which form the higher

level of nodes;

3. Step 2 is performed in a recursive fashion eventually

resulting in a tree structure with a single bounding

sphere at the top of the tree.

In step 2, we can use the following algorithm:

1. Select group centers from the input spheres using the

greedy Procedure 3;

2. Assign each input sphere to the group with the nearest

center;

3. Construct a bounding sphere for each group.

This algorithm is practical only for a relatively small number (less

than 105) of input spheres, because Procedure 3 has quadratic time

complexity. To overcome this problem, we provide input in smaller

portions. The portions are determined by recursively subdividing

the input set of spheres using k-d tree subdivision algorithm.[28]

Procedure 3 Select group centers in BSH
construction

input: S 5 (a list of spheres), lmin 5 (minimal distance between

group centers)
output: Sselected 5 (a set of selected group centers)

1: S  (order S by the distance to S[0])

2: Sselected  1
3: Slocked  1

4: for all a � S do

5: if a 62 Slocked then

6: Sselected  Sselected [ a

7: for all b � S do

8: if distance(a, b)< lmin then

9: Slocked  Slocked [ b

10: return Sselected

Two examples of bounding spheres hierarchies are shown in

Figure 5. Searching in BSH is performed as in any other tree

structure—children are not examined if their parent does not

satisfy the predefined condition. In the case of BSH, a node is

not examined if the bounding sphere of the parent node does

not satisfy the predefined constraint. A search starts from the

root node and can be performed in either depth-first or

breadth-first manner. If we need to find out whether at least

one ball from B satisfies some condition (e.g., if any ball inter-

sects a tangent sphere), then the depth-first search method is

more beneficial because it reaches the leaves level faster.

Handling special situations

The Voronoi diagram of balls may exhibit various special cases

and anomalies.[14,29] As our algorithm searches for Voronoi ver-

tices, we focus on handling two special situations that relate

to the existence of Voronoi vertices and valid quadruples.

First, let us consider a ball that has the Voronoi cell without

vertices and, therefore, is not part of any valid quadruple. As

noted by Medvedev et al.,[11] such orphaned balls can be identi-

fied and handled separately after the search for the Voronoi ver-

tices. We choose to simply report the orphaned balls. Our tests,

described later in the text, show that occurrences of orphaned

balls in macromolecular structures are extremely rare and that

they represent physically nonrealistic stereochemistry.

Second, let us consider a situation where more than four balls

share the same empty tangent sphere. If n is the number of these

Figure 5. (a) 2D example of a BSH. (b) Illustration of a BSH applied to a

protein structure: protein atoms (left), the first layer (middle), and the sec-

ond layer (right) of bounding spheres. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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spheres, then it is possible to select up to
�

n
4

�
quadruples defin-

ing the same Voronoi vertex. Our algorithm selects a smaller set

of quadruples because it considers halfspaces defined by triples

of balls. For example, if the algorithm is applied to a set of points

where more than four points share the same circumsphere, it

produces a valid triangulation where simplices meet edge-to-

edge or vertex-to-vertex and do not overlap. However, we pro-

vide an optional procedure for finding all possible valid quadru-

ples. After computing all the Voronoi vertices, we use a BSH to

search for all the touching balls for each of the constructed tan-

gent spheres. We then report surplus quadruples for each tan-

gent sphere that has more than four touching balls.

Parallelization of the algorithm

We parallelize the algorithm by implementing the following

strategy:

1. Subdivide the set of input balls B into k smaller sets

B1; B2; . . . ; Bk .

2. In parallel: for each Bi 2 fB1; B2; . . . ; Bkg find a set Qi of

all valid quadruples that contain at least one ball from Bi.

3. Return the full set of quadruples Q5Q1 [ Q2 [ . . . [ Qk .

In step 1, we recursively subdivide the input set of balls

using k-d tree subdivision algorithm,[28] so that during each

subdivision step the input is divided into parts that are as sim-

ilar in size as possible. In step 2, we run the algorithm for B as

defined in Procedure 1, but maintain the following constraint:

every triple pushed into the stack should contain at least one

element of Bi. This requires a simple modification in the proce-

dure for finding a first valid triple (called in lines 5 and 22 of

Procedure 1): a returned first valid triple should contain at

least one element of Bi.

Convergence of the algorithm

Let us show that both sequential and parallel versions of our

algorithm find all the Voronoi vertices. Missing a Voronoi ver-

tex implies missing a valid quadruple (otherwise it would

imply a wrongful rejection of an empty tangent sphere, which

is not possible because the check for the sphere emptiness is

performed explicitly). Let us assume that there is a valid quad-

ruple qm that was missed. Let us consider a ball bm � qm. If

bm is not a part of some found valid quadruple, then the pro-

cedure for finding the first valid triple containing bm would be

called, which would find either qm or some other valid quadru-

ple containing bm. Therefore, bm must be a part of some

found valid quadruple qf 6¼ qm. Let us now consider the Voro-

noi cell Vm of bm. For any two vertices of Vm there is a path of

Voronoi edges between them (none of the special cases[14] of

Voronoi cells of balls have disjoint sets of vertices). Each Voro-

noi edge of Vm corresponds to a valid triple that contains bm.

Therefore, there is a path of valid triples containing bm

between any two valid quadruples containing bm. The sequen-

tial version of the algorithm would follow such a path because

it would search for neighbors of every valid triple (including

the triples that are subsets of qf ). The parallel version would

follow such a path because it would search for neighbors of

every valid triple that contains bm when processing the subset

of the input balls that contains bm. Thus, if qf was found, then

qm would be found too, which contradicts the initial assump-

tion that qm was missed.

Results

Implementation

Our algorithm for computing the vertices of the Voronoi dia-

gram of 3D balls is implemented as an open-source C11 pro-

gram, named Voronota. It has no external dependencies, and

only a C11 compiler is needed to build it. In addition, we

developed parallel implementations of the algorithm using

OpenMP and MPI technologies.

All the geometric calculations are implemented using dou-

ble precision floating point numbers (C11 “double” data

type). To reduce the effects of numerical errors, we apply sev-

eral techniques. We use Kahan summation algorithm[30] in the

code for solving equations when computing tangent spheres

and tangent planes. For quadratic equations, we use a numeri-

cally safer solving algorithm.[31] After computing each tangent

sphere or plane, we calculate to what extent the computed

object is really tangent: the obtained tangency error estimate

is used when performing intersection queries.

As an input, Voronota accepts a list of balls in the plain text

format. The software provides a way to create such lists of

balls from files in PDB and mmCIF formats. By default, all het-

eroatoms and all hydrogen atoms are ignored, but this behav-

ior can be altered using command-line options. Voronota also

offers the possibility to customize VDW radii of atoms. The

output of Voronota is an easily parseable list of valid quadru-

ples and the corresponding empty tangent spheres.

Testing on Protein Data Bank structures

The software was tested on Intel Core i7–2600 3.40GHz proc-

essor. First, we compared the performance of our software and

of two other tools: QTFier[18] (version 1.0) and awVoronoi[19]

(version 1.0.0). These tools output both the Voronoi vertices

and the topological links between them, whereas Voronota

outputs only Voronoi vertices. Therefore, we provide a running

time comparison only for an informational purpose.

The test set consisted of all asymmetric units available from

the protein data bank (PDB) database[32] as of May 15, 2013

(90,365 structures, each having at least four non-hydrogen

“ATOM” records). Hydrogen atoms and heteroatoms were

removed from the input structures. All the three tools were

given the same set of coordinates and used the same set of

VDW radii[33] (it was the only set of radii available in QTFier).

For speed analysis, we measured CPU-time needed to process

every input structure (Figs. 6a and 6b). Voronota processed

the test set in about 34.8 h, QTFier and awVoronoi in 138.2

and 172.9 h, respectively. Importantly, Voronota did not fail on

any of the input PDB structures, whereas QTFier failed on 259

and awVoronoi failed on 104.

Results obtained on the PDB test set enabled us to make

some generalizations. For example, it turned out that the
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number of valid quadruples linearly correlates with the num-

ber of atoms (Pearson’s correlation coefficient being greater

than 0.99). On average, the number of valid quadruples was

about 6.6 times greater than the number of atoms and about

two times smaller than the number of valid triples. Only less

than 0.005% of all the valid triples were not constricted, and

only 18 of about 4:53108 atomic balls did not have any Voro-

noi vertices. On average, about 11 quadruples had to be

examined to find the first valid triple.

We also asked if there is any quadruple q that meets both

of the following two conditions: (1) q is found by QTFier or

awVoronoi, but not by Voronota; (2) q is valid with respect to

the 10210 angstroms threshold used for checking if any of the

tangent spheres defined by q is empty. There were some

quadruples meeting the first condition, but none of them met

the second condition. One of the reasons for slight differences

in the output is that the three programs handle floating point

arithmetic errors differently. The tools may also be using differ-

ent approaches to handle degenerate situations.

To check if Voronota is capable of properly handling mol-

ecules with hydrogen atoms, we performed a similar test

routine with all the NMR entries from the initial PDB set

(9883 structures, only first structural model from each entry

was used). This time hydrogen atoms were retained. Voro-

nota successfully processed all the input structures. In com-

parison with the hydrogen-free testing results, there were

more nonconstricted valid triples (� 0.5%) and atomic balls

that did not have any Voronoi vertices (117 atomic balls

from 39 input structures). Voronota processed the input set

in about 1.3 h, QTFier and awVoronoi in 3.3 and 15.4 h,

respectively.

We analyzed all the situations where either a hydrogen or

non-hydrogen atom did not have any corresponding Voronoi

vertices. We found that these cases represent either unrealisti-

cally short covalent bonds or severe steric clashes of non-

bonded atoms. Therefore, such situations may be considered

to be indicators of dubious low-quality macromolecular

structures.

Testing on protein and RNA structural models

Computational structural models are becoming widely used

for various applications. However, models, especially of lower

accuracy, may have a number of physically unfeasible features.

Therefore, we decided to test whether Voronota is sufficiently

robust to be used for computational models. To this end, we

Figure 6. (a) CPU-time values for the macromolecular structures available from the PDB database. (b) CPU-time values for 95% of smallest structures from

PDB. (c) Voronota CPU-time values for protein and RNA structural models. (d) Voronota run-time and CPU-time values for nonparallel and parallel imple-

mentations. Parallel implementation was executed on four computational units. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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used 28,806 protein models ranging widely in their quality

submitted by modeling servers to CASP9[34] and CASP10[35]

experiments. Voronota successfully processed all the structural

models (QTFier failed on 31 and awVoronoi failed on 875 input

structures). In addition, Voronota was successful in processing

all 42,585 RNA models from the “randstr” decoys set.[36] For

the protein and RNA models, the relation between structure

size and CPU-time (Fig. 6c) was consistent with the results for

the PDB structures (Figs. 6a and 6b).

Testing parallel implementations

We tested the performance of our OpenMP-based parallel

implementation on the 5000 largest structures from PDB. The

execution was performed on the same machine as before, four

computational units were used for each input structure. Figure

6d shows the recorded run-time (real time) and CPU-time

(total amount of time spent by all the used computational

units) values for both nonparallel and parallel implementations.

The message passing interface (MPI)-based parallel imple-

mentation is likely most suitable for processing very large

structures on a computing cluster. For example, we processed

the HIV virus capsid structure (PDB ID 3J3Q, 2,440,800 atoms)

on a cluster of Intel Xeon X5650 2.66 GHz processors. When

nine CPU cores were used, run-time and CPU-time values were

511 and 4176 seconds, respectively. For 17 cores, the values

were 293 and 4330 s, for 33 cores—189 and 5018 s.

Conclusions

In this article, we presented a simple and robust algorithm for

computing the vertices of the Voronoi diagram of balls. The

algorithm is particularly well-suited for processing 3D struc-

tures of biological macromolecules. It takes advantage of the

observation that in the case of macromolecular structures the

overwhelming majority of valid ball (atom) triples are con-

stricted (have two tangent planes). When processing con-

stricted triples, our algorithm efficiently combines the

knowledge of the search space with the use of hierarchical

spatial indexing. The algorithm uses a bounding spheres hier-

archy (BSH) to iteratively search for neighbors so that the

search space is reduced after each iteration. Importantly, we

introduce a simple approximation for the middle region of the

search space defined by the constricted triple. When process-

ing rare loose triples (triples without two tangent planes) our

algorithm does not attempt to reduce the search space, but

still uses a BSH to speed up the search for neighbors. This

strategy works well in terms of speed and simplicity of the

algorithm implementation. Another important feature of the

algorithm is the simplicity and generality of the procedure for

finding the first valid triple, which enabled us to parallelize the

algorithm in a straightforward manner.

We implemented the algorithm as an open-source console

application, Voronota, which can be run on either single or

multiple processors. Large-scale tests showed that Voronota is

a fast and reliable tool for processing both experimentally

determined and computationally modeled macromolecular

structures. Voronota is easy to deploy and use. It can serve as

a core component for developing other tools that exploit the

Voronoi diagram of balls.
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